From 88d42030530abeba4f3ceaf63da71e6cdfa71267 Mon Sep 17 00:00:00 2001 From: Prefetch Date: Sat, 20 Feb 2021 20:21:32 +0100 Subject: Stop tracking the knowledge base's index.html files --- static/know/concept/dirac-notation/index.html | 137 -------------------------- 1 file changed, 137 deletions(-) delete mode 100644 static/know/concept/dirac-notation/index.html (limited to 'static/know/concept/dirac-notation') diff --git a/static/know/concept/dirac-notation/index.html b/static/know/concept/dirac-notation/index.html deleted file mode 100644 index 5da8c1b..0000000 --- a/static/know/concept/dirac-notation/index.html +++ /dev/null @@ -1,137 +0,0 @@ - - - - - - - Prefetch | Dirac notation - - - - - - - -
-

Dirac notation

-

Dirac notation is a notation to do calculations in a Hilbert space without needing to worry about the space’s representation. It is basically the lingua franca of quantum mechanics.

-

In Dirac notation there are kets \(\ket{V}\) from the Hilbert space \(\mathbb{H}\) and bras \(\bra{V}\) from a dual \(\mathbb{H}'\) of the former. Crucially, the bras and kets are from different Hilbert spaces and therefore cannot be added, but every bra has a corresponding ket and vice versa.

-

Bras and kets can only be combined in two ways: the inner product \(\braket{V}{W}\), which returns a scalar, and the outer product \(\ket{V} \bra{W}\), which returns a mapping \(\hat{L}\) from kets \(\ket{V}\) to other kets \(\ket{V'}\), i.e. a linear operator. Recall that the Hilbert inner product must satisfy:

-

\[\begin{aligned} - \braket{V}{W} = \braket{W}{V}^* -\end{aligned}\]

-

So far, nothing has been said about the actual representation of bras or kets. If we represent kets as \(N\)-dimensional columns vectors, the corresponding bras are given by the kets’ adjoints, i.e. their transpose conjugates:

-

\[\begin{aligned} - \ket{V} = - \begin{bmatrix} - v_1 \\ \vdots \\ v_N - \end{bmatrix} - \quad \implies \quad - \bra{V} = - \begin{bmatrix} - v_1^* & \cdots & v_N^* - \end{bmatrix} -\end{aligned}\]

-

The inner product \(\braket{V}{W}\) is then just the familiar dot product \(V \cdot W\):

-

\[\begin{gathered} - \braket{V}{W} - = - \begin{bmatrix} - v_1^* & \cdots & v_N^* - \end{bmatrix} - \cdot - \begin{bmatrix} - w_1 \\ \vdots \\ w_N - \end{bmatrix} - = v_1^* w_1 + ... + v_N^* w_N -\end{gathered}\]

-

Meanwhile, the outer product \(\ket{V} \bra{W}\) creates an \(N \cross N\) matrix:

-

\[\begin{gathered} - \ket{V} \bra{W} - = - \begin{bmatrix} - v_1 \\ \vdots \\ v_N - \end{bmatrix} - \cdot - \begin{bmatrix} - w_1^* & \cdots & w_N^* - \end{bmatrix} - = - \begin{bmatrix} - v_1 w_1^* & \cdots & v_1 w_N^* \\ - \vdots & \ddots & \vdots \\ - v_N w_1^* & \cdots & v_N w_N^* - \end{bmatrix} -\end{gathered}\]

-

If the kets are instead represented by functions \(f(x)\) of \(x \in [a, b]\), then the bras represent functionals \(F[u(x)]\) which take an unknown function \(u(x)\) as an argument and turn it into a scalar using integration:

-

\[\begin{aligned} - \ket{f} = f(x) - \quad \implies \quad - \bra{f} - = F[u(x)] - = \int_a^b f^*(x) \: u(x) \dd{x} -\end{aligned}\]

-

Consequently, the inner product is simply the following familiar integral:

-

\[\begin{gathered} - \braket{f}{g} - = F[g(x)] - = \int_a^b f^*(x) \: g(x) \dd{x} -\end{gathered}\]

-

However, the outer product becomes something rather abstract:

-

\[\begin{gathered} - \ket{f} \bra{g} - = f(x) \: G[u(x)] - = f(x) \int_a^b g^*(\xi) \: u(\xi) \dd{\xi} -\end{gathered}\]

-

This result makes more sense if we surround it by a bra and a ket:

-

\[\begin{aligned} - \bra{u} \!\Big(\!\ket{f} \bra{g}\!\Big)\! \ket{w} - &= U\big[f(x) \: G[w(x)]\big] - = U\Big[ f(x) \int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big] - \\ - &= \int_a^b u^*(x) \: f(x) \: \Big(\int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big) \dd{x} - \\ - &= \Big( \int_a^b u^*(x) \: f(x) \dd{x} \Big) \Big( \int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big) - \\ - &= \braket{u}{f} \braket{g}{w} -\end{aligned}\]

-
-© "Prefetch". Licensed under CC BY-SA 4.0. - - -- cgit v1.2.3