From f04a80d30c6f4bd7a0c17fc5ec26ed7968621edf Mon Sep 17 00:00:00 2001 From: Prefetch Date: Fri, 19 Feb 2021 20:25:37 +0100 Subject: Proof-of-concept for knowledge base --- static/know/blochs-theorem/index.html | 103 ++++++++++++++++++++++++++++++++++ 1 file changed, 103 insertions(+) create mode 100644 static/know/blochs-theorem/index.html (limited to 'static/know') diff --git a/static/know/blochs-theorem/index.html b/static/know/blochs-theorem/index.html new file mode 100644 index 0000000..26e3480 --- /dev/null +++ b/static/know/blochs-theorem/index.html @@ -0,0 +1,103 @@ + + + + + + + Prefetch | Bloch’s theorem + + + + +
+ +

Bloch’s theorem

+

In quantum mechanics, Bloch’s theorem states that, given a potential V(r)V(\vec{r}) which is periodic on a lattice, i.e. V(r)=V(r+a)V(\vec{r}) = V(\vec{r} + \vec{a}) for a primitive lattice vector a\vec{a}, then it follows that the solutions ψ(r)\psi(\vec{r}) to the time-independent Schrödinger equation take the following form, where the function u(r)u(\vec{r}) is periodic on the same lattice, i.e. u(r)=u(r+a)u(\vec{r}) = u(\vec{r} + \vec{a}):

+

ψ(r)=u(r)eikr +\begin{aligned} + \boxed{ + \psi(\vec{r}) = u(\vec{r}) e^{i \vec{k} \cdot \vec{r}} + } +\end{aligned} +

+

In other words, in a periodic potential, the solutions are simply plane waves with a periodic modulation, known as Bloch functions or Bloch states.

+

This is suprisingly easy to prove: if the Hamiltonian Ĥ\hat{H} is lattice-periodic, then it will commute with the unitary translation operator T̂(a)\hat{T}(\vec{a}), i.e. [Ĥ,T̂(a)]=0[\hat{H}, \hat{T}(\vec{a})] = 0. Therefore Ĥ\hat{H} and T̂(a)\hat{T}(\vec{a}) must share eigenstates ψ(r)\psi(\vec{r}):

+

Ĥψ(r)=Eψ(r)T̂(a)ψ(r)=τψ(r) +\begin{aligned} + \hat{H} \:\psi(\vec{r}) = E \:\psi(\vec{r}) + \qquad + \hat{T}(\vec{a}) \:\psi(\vec{r}) = \tau \:\psi(\vec{r}) +\end{aligned} +

+

Since T̂\hat{T} is unitary, its eigenvalues τ\tau must have the form eiθe^{i \theta}, with θ\theta real. Therefore a translation by a\vec{a} causes a phase shift, for some vector k\vec{k}:

+

ψ(r+a)=T̂(a)ψ(r)=eiθψ(r)=eikaψ(r) +\begin{aligned} + \psi(\vec{r} + \vec{a}) + = \hat{T}(\vec{a}) \:\psi(\vec{r}) + = e^{i \theta} \:\psi(\vec{r}) + = e^{i \vec{k} \cdot \vec{a}} \:\psi(\vec{r}) +\end{aligned} +

+

Let us now define the following function, keeping our arbitrary choice of k\vec{k}:

+

u(r)=eikrψ(r) +\begin{aligned} + u(\vec{r}) + = e^{- i \vec{k} \cdot \vec{r}} \:\psi(\vec{r}) +\end{aligned} +

+

As it turns out, this function is guaranteed to be lattice-periodic for any k\vec{k}:

+

u(r+a)=eik(r+a)ψ(r+a)=eikreikaeikaψ(r)=eikrψ(r)=u(r) +\begin{aligned} + u(\vec{r} + \vec{a}) + &= e^{- i \vec{k} \cdot (\vec{r} + \vec{a})} \:\psi(\vec{r} + \vec{a}) + \\ + &= e^{- i \vec{k} \cdot \vec{r}} e^{- i \vec{k} \cdot \vec{a}} e^{i \vec{k} \cdot \vec{a}} \:\psi(\vec{r}) + \\ + &= e^{- i \vec{k} \cdot \vec{r}} \:\psi(\vec{r}) + \\ + &= u(\vec{r}) +\end{aligned} +

+

Then Bloch’s theorem follows from isolating the definition of u(r)u(\vec{r}) for ψ(r)\psi(\vec{r}).

+ +
+© "Prefetch". Licensed under CC BY-SA 4.0. + + -- cgit v1.2.3