Categories:
Quantum information ,
Quantum mechanics ,
Two-level system .
Bloch sphere
In quantum mechanics, particularly quantum information,
the Bloch sphere is an invaluable tool to visualize qubits.
All pure qubit states are represented by a point on the sphere’s surface:
The x x x , y y y and z z z -axes represent the components of a spin-1/2-alike system,
and their extremes are the eigenstates of the Pauli matrices:
σ ^ z → { ∣ 0 ⟩ , ∣ 1 ⟩ } σ ^ x → { ∣ + ⟩ , ∣ − ⟩ } σ ^ y → { ∣ + i ⟩ , ∣ − i ⟩ } \begin{aligned}
\hat{\sigma}_z
\to \{\ket{0}, \ket{1}\}
\qquad
\hat{\sigma}_x
\to \{\ket{+}, \ket{-}\}
\qquad
\hat{\sigma}_y
\to \{\ket{+i}, \ket{-i}\}
\end{aligned} σ ^ z → { ∣ 0 ⟩ , ∣ 1 ⟩ } σ ^ x → { ∣ + ⟩ , ∣ − ⟩ } σ ^ y → { ∣ + i ⟩ , ∣ − i ⟩ }
Where the latter two pairs are expressed as follows in the conventional z z z -basis:
∣ ± ⟩ = ∣ 0 ⟩ ± ∣ 1 ⟩ 2 ∣ ± i ⟩ = ∣ 0 ⟩ ± i ∣ 1 ⟩ 2 \begin{aligned}
\ket{\pm}
= \frac{\ket{0} \pm \ket{1}}{\sqrt{2}}
\qquad \qquad
\ket{\pm i}
= \frac{\ket{0} \pm i \ket{1}}{\sqrt{2}}
\end{aligned} ∣ ± ⟩ = 2 ∣ 0 ⟩ ± ∣ 1 ⟩ ∣ ± i ⟩ = 2 ∣ 0 ⟩ ± i ∣ 1 ⟩
More generally, every point on the surface of the sphere
describes a pure qubit state in terms of the angles θ \theta θ and φ \varphi φ ,
respectively the elevation and azimuth:
∣ Ψ ⟩ = cos ( θ 2 ) ∣ 0 ⟩ + exp ( i φ ) sin ( θ 2 ) ∣ 1 ⟩ \begin{aligned}
\ket{\Psi} = \cos\!\Big(\frac{\theta}{2}\Big) \ket{0} + \exp(i \varphi) \sin\!\Big(\frac{\theta}{2}\Big) \ket{1}
\end{aligned} ∣ Ψ ⟩ = cos ( 2 θ ) ∣ 0 ⟩ + exp ( i φ ) sin ( 2 θ ) ∣ 1 ⟩
Another way to describe states is the Bloch vector r ⃗ \vec{r} r ,
which is simply the ( x , y , z ) (x,y,z) ( x , y , z ) -coordinates of a point on the sphere.
Let the radius r ≤ 1 r \le 1 r ≤ 1 :
r ⃗ = [ r x r y r z ] = [ r sin θ cos φ r sin θ sin φ r cos θ ] \begin{aligned}
\boxed{
\vec{r}
= \begin{bmatrix} r_x \\ r_y \\ r_z \end{bmatrix}
= \begin{bmatrix} r \sin\theta \cos\varphi \\ r \sin\theta \sin\varphi \\ r \cos\theta \end{bmatrix}
}
\end{aligned} r = r x r y r z = r sin θ cos φ r sin θ sin φ r cos θ
Note that r ⃗ \vec{r} r is not actually a qubit state,
but rather a description of one.
The main point of the Bloch vector is that it allows us
to describe the qubit using a density operator :
ρ ^ = 1 2 ( I ^ + r ⃗ ⋅ σ ⃗ ) \begin{aligned}
\boxed{
\hat{\rho}
= \frac{1}{2} \Big( \hat{I} + \vec{r} \cdot \vec{\sigma} \Big)
}
\end{aligned} ρ ^ = 2 1 ( I ^ + r ⋅ σ )
Where σ ⃗ = ( σ ^ x , σ ^ y , σ ^ z ) \vec{\sigma} = (\hat{\sigma}_x, \hat{\sigma}_y, \hat{\sigma}_z) σ = ( σ ^ x , σ ^ y , σ ^ z ) is the Pauli “vector”.
Now, we know that a density matrix represents a pure ensemble
if and only if it is idempotent, i.e. ρ ^ 2 = ρ ^ \hat{\rho}^2 = \hat{\rho} ρ ^ 2 = ρ ^ :
ρ ^ 2 = 1 4 ( I ^ 2 + 2 I ^ ( r ⃗ ⋅ σ ⃗ ) + ( r ⃗ ⋅ σ ⃗ ) 2 ) = 1 4 ( I ^ + 2 ( r ⃗ ⋅ σ ⃗ ) + ( r ⃗ ⋅ σ ⃗ ) 2 ) \begin{aligned}
\hat{\rho}^2
&= \frac{1}{4} \Big( \hat{I}^2 + 2 \hat{I} (\vec{r} \cdot \vec{\sigma}) + (\vec{r} \cdot \vec{\sigma})^2 \Big)
= \frac{1}{4} \Big( \hat{I} + 2 (\vec{r} \cdot \vec{\sigma}) + (\vec{r} \cdot \vec{\sigma})^2 \Big)
\end{aligned} ρ ^ 2 = 4 1 ( I ^ 2 + 2 I ^ ( r ⋅ σ ) + ( r ⋅ σ ) 2 ) = 4 1 ( I ^ + 2 ( r ⋅ σ ) + ( r ⋅ σ ) 2 )
You can easily convince yourself that, if ( r ⃗ ⋅ σ ⃗ ) 2 = I ^ (\vec{r} \cdot \vec{\sigma})^2 = \hat{I} ( r ⋅ σ ) 2 = I ^ ,
we get ρ ^ \hat{\rho} ρ ^ again, so the state is pure:
( r ⃗ ⋅ σ ⃗ ) 2 = ( r x σ ^ x + r y σ ^ y + r z σ ^ z ) 2 = r x 2 σ ^ x 2 + r x r y σ ^ x σ ^ y + r x r z σ ^ x σ ^ z + r x r y σ ^ y σ ^ x + r y 2 σ ^ y 2 + r y r z σ ^ y σ ^ z + r x r z σ ^ z σ ^ x + r y r z σ ^ z σ ^ y + r z 2 σ ^ z 2 = r x 2 I ^ + r y 2 I ^ + r z 2 I ^ + r x r y { σ ^ x , σ ^ y } + r y r z { σ ^ y , σ ^ z } + r x r z { σ ^ x , σ ^ z } = ( r x 2 + r y 2 + r z 2 ) I ^ = r 2 I ^ \begin{aligned}
(\vec{r} \cdot \vec{\sigma})^2
&= (r_x \hat{\sigma}_x + r_y \hat{\sigma}_y + r_z \hat{\sigma}_z)^2
\\
&= r_x^2 \hat{\sigma}_x^2 + r_x r_y \hat{\sigma}_x \hat{\sigma}_y + r_x r_z \hat{\sigma}_x \hat{\sigma}_z
+ r_x r_y \hat{\sigma}_y \hat{\sigma}_x + r_y^2 \hat{\sigma}_y^2
\\
&\quad + r_y r_z \hat{\sigma}_y \hat{\sigma}_z + r_x r_z \hat{\sigma}_z \hat{\sigma}_x
+ r_y r_z \hat{\sigma}_z \hat{\sigma}_y + r_z^2 \hat{\sigma}_z^2
\\
&= r_x^2 \hat{I} + r_y^2 \hat{I} + r_z^2 \hat{I}
+ r_x r_y \{ \hat{\sigma}_x, \hat{\sigma}_y \}
+ r_y r_z \{ \hat{\sigma}_y, \hat{\sigma}_z \}
+ r_x r_z \{ \hat{\sigma}_x, \hat{\sigma}_z \}
\\
&= (r_x^2 + r_y^2 + r_z^2) \hat{I}
= r^2 \hat{I}
\end{aligned} ( r ⋅ σ ) 2 = ( r x σ ^ x + r y σ ^ y + r z σ ^ z ) 2 = r x 2 σ ^ x 2 + r x r y σ ^ x σ ^ y + r x r z σ ^ x σ ^ z + r x r y σ ^ y σ ^ x + r y 2 σ ^ y 2 + r y r z σ ^ y σ ^ z + r x r z σ ^ z σ ^ x + r y r z σ ^ z σ ^ y + r z 2 σ ^ z 2 = r x 2 I ^ + r y 2 I ^ + r z 2 I ^ + r x r y { σ ^ x , σ ^ y } + r y r z { σ ^ y , σ ^ z } + r x r z { σ ^ x , σ ^ z } = ( r x 2 + r y 2 + r z 2 ) I ^ = r 2 I ^
Therefore, if the radius r = 1 r = 1 r = 1 , the ensemble is pure,
else if r < 1 r < 1 r < 1 it is mixed.
Another useful property of the Bloch vector
is that the expectation value of the Pauli matrices
are given by the corresponding component of r ⃗ \vec{r} r :
⟨ σ ^ x ⟩ = r x ⟨ σ ^ y ⟩ = r y ⟨ σ ^ z ⟩ = r z \begin{aligned}
\boxed{
\begin{aligned}
\expval{\hat{\sigma}_{x}}
&= r_{x}
\\
\expval{\hat{\sigma}_{y}}
&= r_{y}
\\
\expval{\hat{\sigma}_{z}}
&= r_{z}
\end{aligned}
}
\end{aligned} ⟨ σ ^ x ⟩ ⟨ σ ^ y ⟩ ⟨ σ ^ z ⟩ = r x = r y = r z
This is a consequence of the above form of the density operator ρ ^ \hat{\rho} ρ ^ .
For example for σ ^ z \hat{\sigma}_z σ ^ z :
⟨ σ ^ z ⟩ = T r ( ρ ^ σ ^ z ) = 1 2 T r ( σ ^ z + ( r ⃗ ⋅ σ ⃗ ) σ ^ z ) = 1 2 T r ( ( r x σ ^ x + r y σ ^ y + r z σ ^ z ) σ ^ z ) = 1 2 T r ( r x σ ^ x σ ^ z + r y σ ^ y σ ^ z + r z σ ^ z 2 ) = 1 2 T r ( r z I ^ ) = r z \begin{aligned}
\expval{\hat{\sigma}_z}
&= \Tr(\hat{\rho} \hat{\sigma}_z)
= \frac{1}{2} \Tr\!\big(\hat{\sigma}_z + (\vec{r} \cdot \vec{\sigma}) \hat{\sigma}_z \big)
= \frac{1}{2} \Tr\!\big( (r_x \hat{\sigma}_x + r_y \hat{\sigma}_y + r_z \hat{\sigma}_z) \hat{\sigma}_z \big)
\\
&= \frac{1}{2} \Tr\!\big( r_x \hat{\sigma}_x \hat{\sigma}_z + r_y \hat{\sigma}_y \hat{\sigma}_z + r_z \hat{\sigma}_z^2 \big)
= \frac{1}{2} \Tr\!\big( r_z \hat{I} \big)
= r_z
\end{aligned} ⟨ σ ^ z ⟩ = Tr ( ρ ^ σ ^ z ) = 2 1 Tr ( σ ^ z + ( r ⋅ σ ) σ ^ z ) = 2 1 Tr ( ( r x σ ^ x + r y σ ^ y + r z σ ^ z ) σ ^ z ) = 2 1 Tr ( r x σ ^ x σ ^ z + r y σ ^ y σ ^ z + r z σ ^ z 2 ) = 2 1 Tr ( r z I ^ ) = r z
References
N. Brunner,
Quantum information theory: lecture notes ,
2019, unpublished.
J.B. Brask,
Quantum information: lecture notes ,
2021, unpublished.