Categories:
Fluid mechanics ,
Physics ,
Thermodynamics .
Boltzmann equation
Consider a collection of particles,
each with its own position r \vb{r} r and velocity v \vb{v} v .
We can thus define a probability density function f ( r , v , t ) f(\vb{r}, \vb{v}, t) f ( r , v , t )
describing the expected particle count at ( r , v ) (\vb{r}, \vb{v}) ( r , v ) at time t t t .
Let the total number of particles N N N be conserved, then clearly:
N = ∬ − ∞ ∞ f ( r , v , t ) d r d v \begin{aligned}
N = \iint_{-\infty}^\infty f(\vb{r}, \vb{v}, t) \dd{\vb{r}} \dd{\vb{v}}
\end{aligned} N = ∬ − ∞ ∞ f ( r , v , t ) d r d v
At equilibrium, all processes affecting the particles
no longer have a net effect, so f f f is fixed:
d f d t = 0 \begin{aligned}
\dv{f}{t}
= 0
\end{aligned} d t d f = 0
If each particle’s momentum only changes due to collisions,
then a non-equilibrium state can be described as follows, very generally:
d f d t = ( ∂ f ∂ t ) c o l \begin{aligned}
\dv{f}{t}
= \bigg(\! \pdv{f}{t} \!\bigg)_\mathrm{\!col}
\end{aligned} d t d f = ( ∂ t ∂ f ) col
Where the right-hand side simply means “all changes in f f f due to collisions”.
Applying the chain rule to the left-hand side then yields:
( ∂ f ∂ t ) c o l = ∂ f ∂ t + ( ∂ f ∂ x d x d t + ∂ f ∂ y d y d t + ∂ f ∂ z d z d t ) + ( ∂ f ∂ v x d v x d t + ∂ f ∂ v y d v y d t + ∂ f ∂ v z d v z d t ) = ∂ f ∂ t + ( v x ∂ f ∂ x + v y ∂ f ∂ y + v z ∂ f ∂ z ) + ( a x ∂ f ∂ v x + a y ∂ f ∂ v y + a z ∂ f ∂ v z ) = ∂ f ∂ t + v ⋅ ∇ f + a ⋅ ∂ f ∂ v \begin{aligned}
\bigg(\! \pdv{f}{t} \!\bigg)_\mathrm{\!col}
&= \pdv{f}{t} + \bigg( \pdv{f}{x} \dv{x}{t} \!+\! \pdv{f}{y} \dv{y}{t} \!+\! \pdv{f}{z} \dv{z}{t} \bigg)
+ \bigg( \pdv{f}{v_x} \dv{v_x}{t} \!+\! \pdv{f}{v_y} \dv{v_y}{t} \!+\! \pdv{f}{v_z} \dv{v_z}{t} \bigg)
\\
&= \pdv{f}{t} + \bigg( v_x \pdv{f}{x} \!+\! v_y \pdv{f}{y} \!+\! v_z \pdv{f}{z} \bigg)
+ \bigg( a_x \pdv{f}{v_x} \!+\! a_y \pdv{f}{v_y} \!+\! a_z \pdv{f}{v_z} \bigg)
\\
&= \pdv{f}{t} + \vb{v} \cdot \nabla f + \vb{a} \cdot \pdv{f}{\vb{v}}
\end{aligned} ( ∂ t ∂ f ) col = ∂ t ∂ f + ( ∂ x ∂ f d t d x + ∂ y ∂ f d t d y + ∂ z ∂ f d t d z ) + ( ∂ v x ∂ f d t d v x + ∂ v y ∂ f d t d v y + ∂ v z ∂ f d t d v z ) = ∂ t ∂ f + ( v x ∂ x ∂ f + v y ∂ y ∂ f + v z ∂ z ∂ f ) + ( a x ∂ v x ∂ f + a y ∂ v y ∂ f + a z ∂ v z ∂ f ) = ∂ t ∂ f + v ⋅ ∇ f + a ⋅ ∂ v ∂ f
Where we have introduced the shorthand ∂ f / ∂ v \ipdv{f}{\vb{v}} ∂ f / ∂ v .
Inserting Newton’s second law F = m a \vb{F} = m \vb{a} F = m a
leads us to the Boltzmann equation or
Boltzmann transport equation (BTE):
∂ f ∂ t + v ⋅ ∇ f + F m ⋅ ∂ f ∂ v = ( ∂ f ∂ t ) c o l \begin{aligned}
\boxed{
\pdv{f}{t} + \vb{v} \cdot \nabla f + \frac{\vb{F}}{m} \cdot \pdv{f}{\vb{v}}
= \bigg(\! \pdv{f}{t} \!\bigg)_\mathrm{\!col}
}
\end{aligned} ∂ t ∂ f + v ⋅ ∇ f + m F ⋅ ∂ v ∂ f = ( ∂ t ∂ f ) col
But what about the collision term?
Expressions for it exist, which are almost exact in many cases,
but unfortunately also quite difficult to work with.
In addition, f f f is a 7-dimensional function,
so the BTE is already hard to solve without collisions!
We only present the simplest case,
known as the Bhatnagar-Gross-Krook approximation :
if the equilibrium state f 0 ( r , v ) f_0(\vb{r}, \vb{v}) f 0 ( r , v ) is known,
then each collision brings the system closer to f 0 f_0 f 0 :
∂ f ∂ t + v ⋅ ∇ f + F m ⋅ ∂ f ∂ v = f 0 − f τ \begin{aligned}
\pdv{f}{t} + \vb{v} \cdot \nabla f + \frac{\vb{F}}{m} \cdot \pdv{f}{\vb{v}}
= \frac{f_0 - f}{\tau}
\end{aligned} ∂ t ∂ f + v ⋅ ∇ f + m F ⋅ ∂ v ∂ f = τ f 0 − f
Where τ \tau τ is the average collision period.
The right-hand side is called the Krook term .
Moment equations
From the definition of f f f ,
we see that integrating over all v \vb{v} v yields the particle density n n n :
n ( r , t ) = ∫ − ∞ ∞ f ( r , v , t ) d v \begin{aligned}
n(\vb{r}, t) = \int_{-\infty}^\infty f(\vb{r}, \vb{v}, t) \dd{\vb{v}}
\end{aligned} n ( r , t ) = ∫ − ∞ ∞ f ( r , v , t ) d v
Consequently, a purely velocity-dependent quantity Q ( v ) Q(\vb{v}) Q ( v ) can be averaged like so:
⟨ Q ⟩ = 1 n ∫ − ∞ ∞ Q ( r , v , t ) f ( r , v , t ) d v \begin{aligned}
\Expval{Q}
= \frac{1}{n} \int_{-\infty}^\infty Q(\vb{r}, \vb{v}, t) \: f(\vb{r}, \vb{v}, t) \dd{\vb{v}}
\end{aligned} ⟨ Q ⟩ = n 1 ∫ − ∞ ∞ Q ( r , v , t ) f ( r , v , t ) d v
With that in mind, we multiply the collisionless BTE equation by Q ( v ) Q(\vb{v}) Q ( v ) and integrate,
assuming that F \vb{F} F does not depend on v \vb{v} v :
0 = ∫ − ∞ ∞ Q ( ∂ f ∂ t + v ⋅ ∇ f + F m ⋅ ∂ f ∂ v ) d v = ∫ Q ∂ f ∂ t d v + ∫ ( v ⋅ ∇ f ) Q d v + F m ⋅ ∫ Q ∂ f ∂ v d v = ∂ ∂ t ∫ Q f d v + ∫ ( ∇ ⋅ ( v f ) − f ( ∇ ⋅ v ) ) Q d v + F m ⋅ ∫ ( ∂ ∂ v ( Q f ) − f ∂ Q ∂ v ) d v \begin{aligned}
0
&= \int_{-\infty}^\infty Q \bigg( \pdv{f}{t} + \vb{v} \cdot \nabla f + \frac{\vb{F}}{m} \cdot \pdv{f}{\vb{v}} \bigg) \dd{\vb{v}}
\\
&= \int Q \pdv{f}{t} \dd{\vb{v}} + \int (\vb{v} \cdot \nabla f) \: Q \dd{\vb{v}} + \frac{\vb{F}}{m} \cdot \int Q \pdv{f}{\vb{v}} \dd{\vb{v}}
\\
&= \pdv{}{t}\int Q f \dd{\vb{v}} + \int \Big( \nabla \cdot (\vb{v} f) - f (\nabla \cdot \vb{v}) \Big) Q \dd{\vb{v}}
+ \frac{\vb{F}}{m} \cdot \int \bigg( \pdv{}{\vb{v}} (Q f) - f \pdv{Q}{\vb{v}} \bigg) \dd{\vb{v}}
\end{aligned} 0 = ∫ − ∞ ∞ Q ( ∂ t ∂ f + v ⋅ ∇ f + m F ⋅ ∂ v ∂ f ) d v = ∫ Q ∂ t ∂ f d v + ∫ ( v ⋅ ∇ f ) Q d v + m F ⋅ ∫ Q ∂ v ∂ f d v = ∂ t ∂ ∫ Q f d v + ∫ ( ∇ ⋅ ( v f ) − f ( ∇ ⋅ v ) ) Q d v + m F ⋅ ∫ ( ∂ v ∂ ( Q f ) − f ∂ v ∂ Q ) d v
The first integral is simply n ⟨ Q ⟩ n \Expval{Q} n ⟨ Q ⟩ .
In the second integral, note that v \vb{v} v is a coordinate
and hence not dependent on r \vb{r} r , so ∇ ⋅ v = 0 \nabla \cdot \vb{v} = 0 ∇ ⋅ v = 0 .
Since f f f is a probability density, f → 0 f \to 0 f → 0 for v → ± ∞ \vb{v} \to \pm\infty v → ± ∞ ,
so the first term in the third integral vanishes after it is integrated:
0 = ∂ ∂ t ( n ⟨ Q ⟩ ) + ∫ ∇ ⋅ ( v f ) Q d v + F m ⋅ ( [ Q f ] − ∞ ∞ − ∫ f ∂ Q ∂ v d v ) = ∂ ∂ t ( n ⟨ Q ⟩ ) + ∇ ⋅ ∫ Q v f d v − F m ⋅ ∫ f ∂ Q ∂ v d v \begin{aligned}
0
&= \pdv{}{t}\big(n \Expval{Q}\big) + \int \nabla \cdot (\vb{v} f) \: Q \dd{\vb{v}}
+ \frac{\vb{F}}{m} \cdot \bigg( \Big[ Q f \Big]_{-\infty}^\infty - \int f \pdv{Q}{\vb{v}} \dd{\vb{v}} \bigg)
\\
&= \pdv{}{t}\big(n \Expval{Q}\big) + \nabla \cdot \int Q \vb{v} f \dd{\vb{v}}
- \frac{\vb{F}}{m} \cdot \int f \pdv{Q}{\vb{v}} \dd{\vb{v}}
\end{aligned} 0 = ∂ t ∂ ( n ⟨ Q ⟩ ) + ∫ ∇ ⋅ ( v f ) Q d v + m F ⋅ ( [ Q f ] − ∞ ∞ − ∫ f ∂ v ∂ Q d v ) = ∂ t ∂ ( n ⟨ Q ⟩ ) + ∇ ⋅ ∫ Q v f d v − m F ⋅ ∫ f ∂ v ∂ Q d v
We thus arrive at the prototype of the BTE’s so-called moment equations :
0 = ∂ ∂ t ( n ⟨ Q ⟩ ) + ∇ ⋅ ( n ⟨ Q v ⟩ ) − F m ⋅ ( n ⟨ ∂ Q ∂ v ⟩ ) \begin{aligned}
\boxed{
0
= \pdv{}{t}\big(n \Expval{Q}\big) + \nabla \cdot \big(n \Expval{Q \vb{v}}\big) - \frac{\vb{F}}{m} \cdot \bigg( n \Expval{\pdv{Q}{\vb{v}}} \bigg)
}
\end{aligned} 0 = ∂ t ∂ ( n ⟨ Q ⟩ ) + ∇ ⋅ ( n ⟨ Q v ⟩ ) − m F ⋅ ( n ⟨ ∂ v ∂ Q ⟩ )
If we set Q = m Q = m Q = m , then the mass density ρ = n ⟨ Q ⟩ \rho = n \Expval{Q} ρ = n ⟨ Q ⟩ ,
and we find that the zeroth moment of the BTE describes conservation of mass,
where V ≡ ⟨ v ⟩ = ∫ v f d v \vb{V} \equiv \Expval{\vb{v}} = \int \vb{v} f \dd{\vb{v}} V ≡ ⟨ v ⟩ = ∫ v f d v is the fluid velocity:
0 = ∂ ρ ∂ t + ∇ ⋅ ( ρ V ) \begin{aligned}
\boxed{
0
= \pdv{\rho}{t} + \nabla \cdot \big(\rho \vb{V}\big)
}
\end{aligned} 0 = ∂ t ∂ ρ + ∇ ⋅ ( ρ V )
If we instead choose the momentum Q = m v Q = m \vb{v} Q = m v ,
we find that the first moment of the BTE describes conservation of momentum,
where P ^ \hat{P} P ^ is the Cauchy stress tensor :
0 = ∂ ∂ t ( ρ V ) + ρ V ( ∇ ⋅ V ) + ∇ ⋅ P ^ − n F \begin{aligned}
\boxed{
0
= \pdv{}{t}\big(\rho \vb{V}\big) + \rho \vb{V} (\nabla \cdot \vb{V}) + \nabla \cdot \hat{P} - n \vb{F}
}
\end{aligned} 0 = ∂ t ∂ ( ρ V ) + ρ V ( ∇ ⋅ V ) + ∇ ⋅ P ^ − n F
Proof
Proof.
We insert Q = m v Q = m \vb{v} Q = m v into our prototype and recognize ρ \rho ρ wherever possible:
0 = ∂ ∂ t ( n ⟨ m v ⟩ ) + ∇ ⋅ ( n ⟨ m v v ⟩ ) − F m ⋅ ( n ⟨ ∂ ( m v ) ∂ v ⟩ ) = ∂ ∂ t ( ρ ⟨ v ⟩ ) + ∇ ⋅ ( ρ ⟨ v v ⟩ ) − F ⋅ ( n ⟨ ∂ v ∂ v ⟩ ) \begin{aligned}
0
&= \pdv{}{t}\big(n \Expval{m \vb{v}}\big) + \nabla \cdot \big(n \Expval{m \vb{v} \vb{v}}\big)
- \frac{\vb{F}}{m} \cdot \bigg( n \Expval{\pdv{(m \vb{v})}{\vb{v}}} \bigg)
\\
&= \pdv{}{t}\big(\rho \Expval{\vb{v}}\big) + \nabla \cdot \big(\rho \Expval{\vb{v} \vb{v}}\big)
- \vb{F} \cdot \bigg( n \Expval{\pdv{\vb{v}}{\vb{v}}} \bigg)
\end{aligned} 0 = ∂ t ∂ ( n ⟨ m v ⟩ ) + ∇ ⋅ ( n ⟨ m vv ⟩ ) − m F ⋅ ( n ⟨ ∂ v ∂ ( m v ) ⟩ ) = ∂ t ∂ ( ρ ⟨ v ⟩ ) + ∇ ⋅ ( ρ ⟨ vv ⟩ ) − F ⋅ ( n ⟨ ∂ v ∂ v ⟩ )
With v v \vb{v} \vb{v} vv being a dyadic product.
To give it a physical interpretation,
we split v = V + w \vb{v} = \vb{V} \!+\! \vb{w} v = V + w ,
where V \vb{V} V is the average velocity vector,
and w \vb{w} w is the local deviation from V \vb{V} V :
⟨ v v ⟩ = ⟨ ( V + w ) ( V + w ) ⟩ = ⟨ V V + 2 V w + w w ⟩ = V V + 2 V ⟨ w ⟩ + ⟨ w w ⟩ \begin{aligned}
\Expval{\vb{v} \vb{v}}
&= \Expval{(\vb{V} \!+\! \vb{w}) (\vb{V} \!+\! \vb{w})}
= \Expval{\vb{V} \vb{V} + 2 \vb{V} \vb{w} + \vb{w} \vb{w}}
= \vb{V} \vb{V} + 2 \vb{V} \Expval{\vb{w}} + \Expval{\vb{w} \vb{w}}
\end{aligned} ⟨ vv ⟩ = ⟨ ( V + w ) ( V + w ) ⟩ = ⟨ VV + 2 Vw + ww ⟩ = VV + 2 V ⟨ w ⟩ + ⟨ ww ⟩
Since w \vb{w} w represents a deviation from the mean, ⟨ w ⟩ = 0 \Expval{\vb{w}} = 0 ⟨ w ⟩ = 0 .
We define the pressure tensor:
P ^ ≡ ρ ⟨ w w ⟩ = ρ ⟨ ( v − V ) ( v − V ) ⟩ \begin{aligned}
\hat{P}
\equiv \rho \Expval{\vb{w} \vb{w}}
= \rho \Expval{(\vb{v} \!-\! \vb{V}) (\vb{v} \!-\! \vb{V})}
\end{aligned} P ^ ≡ ρ ⟨ ww ⟩ = ρ ⟨ ( v − V ) ( v − V ) ⟩
This leads to the desired result,
where ∇ ⋅ ( ρ V V ) \nabla \cdot (\rho \vb{V}\vb{V}) ∇ ⋅ ( ρ VV ) is the fluid momentum,
and ∇ ⋅ P ^ \nabla \cdot \hat{P} ∇ ⋅ P ^ is the viscous/pressure momentum:
0 = ∂ ∂ t ( ρ V ) + ∇ ⋅ ( ρ V V + P ^ ) − n F \begin{aligned}
0
&= \pdv{}{t}\big(\rho \vb{V}\big) + \nabla \cdot \big(\rho \vb{V} \vb{V} + \hat{P}\big) - n \vb{F}
\end{aligned} 0 = ∂ t ∂ ( ρ V ) + ∇ ⋅ ( ρ VV + P ^ ) − n F
Finally, if we choose the kinetic energy Q = m ∣ v ∣ 2 / 2 Q = m |\vb{v}|^2 / 2 Q = m ∣ v ∣ 2 /2 ,
we find that the second moment gives conservation of energy,
where U U U is the thermal energy density and J \vb{J} J is the heat flux:
0 = ∂ ∂ t ( ρ 2 ∣ V ∣ 2 + U ) + ∇ ⋅ ( ρ 2 ∣ V ∣ 2 V + V ⋅ P ^ + U V + J ) − F ⋅ ( n V ) \begin{aligned}
\boxed{
0
= \pdv{}{t}\bigg(\frac{\rho}{2} |\vb{V}|^2 + U \bigg)
+ \nabla \cdot \bigg(\frac{\rho}{2} |\vb{V}|^2 \vb{V} + \vb{V} \cdot \hat{P} + U \vb{V} + \vb{J} \bigg)
- \vb{F} \cdot \big( n \vb{V} \big)
}
\end{aligned} 0 = ∂ t ∂ ( 2 ρ ∣ V ∣ 2 + U ) + ∇ ⋅ ( 2 ρ ∣ V ∣ 2 V + V ⋅ P ^ + U V + J ) − F ⋅ ( n V )
Proof
Proof.
We insert Q = m ∣ v ∣ 2 / 2 Q = m |\vb{v}|^2 / 2 Q = m ∣ v ∣ 2 /2 into our prototype and recognize ρ \rho ρ wherever possible:
0 = ∂ ∂ t ( n ⟨ m ∣ v ∣ 2 2 ⟩ ) + ∇ ⋅ ( n ⟨ m ∣ v ∣ 2 2 v ⟩ ) − F m ⋅ ( n ⟨ ∂ ∂ v m ∣ v ∣ 2 2 ⟩ ) = ∂ ∂ t ( ρ 2 ⟨ ∣ v ∣ 2 ⟩ ) + ∇ ⋅ ( ρ 2 ⟨ ∣ v ∣ 2 v ⟩ ) − F 2 ⋅ ( n ⟨ ∂ ∣ v ∣ 2 ∂ v ⟩ ) \begin{aligned}
0
&= \pdv{}{t}\bigg(n \Expval{\frac{m |\vb{v}|^2}{2}}\bigg)
+ \nabla \cdot \bigg(n \Expval{\frac{m |\vb{v}|^2}{2} \vb{v}}\bigg)
- \frac{\vb{F}}{m} \cdot \bigg( n \Expval{\pdv{}{\vb{v}} \frac{m |\vb{v}|^2}{2}} \bigg)
\\
&= \pdv{}{t}\bigg(\frac{\rho}{2} \Expval{|\vb{v}|^2}\bigg)
+ \nabla \cdot \bigg(\frac{\rho}{2} \Expval{|\vb{v}|^2 \vb{v}}\bigg)
- \frac{\vb{F}}{2} \cdot \bigg( n \Expval{\pdv{|\vb{v}|^2}{\vb{v}}} \bigg)
\end{aligned} 0 = ∂ t ∂ ( n ⟨ 2 m ∣ v ∣ 2 ⟩ ) + ∇ ⋅ ( n ⟨ 2 m ∣ v ∣ 2 v ⟩ ) − m F ⋅ ( n ⟨ ∂ v ∂ 2 m ∣ v ∣ 2 ⟩ ) = ∂ t ∂ ( 2 ρ ⟨ ∣ v ∣ 2 ⟩ ) + ∇ ⋅ ( 2 ρ ⟨ ∣ v ∣ 2 v ⟩ ) − 2 F ⋅ ( n ⟨ ∂ v ∂ ∣ v ∣ 2 ⟩ )
We handle these terms one by one. Substituting v = V + w \vb{v} = \vb{V} + \vb{w} v = V + w in the first gives:
⟨ ∣ v ∣ 2 ⟩ = ⟨ ( V + w ) ⋅ ( V + w ) ⟩ = ⟨ ∣ V ∣ 2 + 2 V ⋅ w + ∣ w ∣ 2 ⟩ = ∣ V ∣ 2 + 2 V ⋅ ⟨ w ⟩ + ⟨ ∣ w ∣ 2 ⟩ = ∣ V ∣ 2 + ⟨ ∣ w ∣ 2 ⟩ \begin{aligned}
\Expval{|\vb{v}|^2}
&= \Expval{(\vb{V} \!+\! \vb{w}) \cdot (\vb{V} \!+\! \vb{w})}
= \Expval{|\vb{V}|^2 + 2 \vb{V} \cdot \vb{w} + |\vb{w}|^2}
\\
&= |\vb{V}|^2 + 2 \vb{V} \cdot \Expval{\vb{w}} + \Expval{|\vb{w}|^2}
= |\vb{V}|^2 + \Expval{|\vb{w}|^2}
\end{aligned} ⟨ ∣ v ∣ 2 ⟩ = ⟨ ( V + w ) ⋅ ( V + w ) ⟩ = ⟨ ∣ V ∣ 2 + 2 V ⋅ w + ∣ w ∣ 2 ⟩ = ∣ V ∣ 2 + 2 V ⋅ ⟨ w ⟩ + ⟨ ∣ w ∣ 2 ⟩ = ∣ V ∣ 2 + ⟨ ∣ w ∣ 2 ⟩
And likewise for the second term,
where we recognize the stress tensor ⟨ w w ⟩ \Expval{\vb{w} \vb{w}} ⟨ ww ⟩ :
⟨ ∣ v ∣ 2 v ⟩ = ⟨ ( V + w ) ⋅ ( V + w ) ( V + w ) ⟩ = ⟨ ( ∣ V ∣ 2 + 2 V ⋅ w + ∣ w ∣ 2 ) ( V + w ) ⟩ = ⟨ ∣ V ∣ 2 V + ∣ V ∣ 2 w + 2 ( V ⋅ w ) V + 2 ( V ⋅ w ) w + ∣ w ∣ 2 V + ∣ w ∣ 2 w ⟩ = ∣ V ∣ 2 V + ∣ V ∣ 2 ⟨ w ⟩ + 2 ( V ⋅ ⟨ w ⟩ ) V + 2 ⟨ ( V ⋅ w ) w ⟩ + ⟨ ∣ w ∣ 2 ⟩ V + ⟨ ∣ w ∣ 2 w ⟩ = ∣ V ∣ 2 V + 0 + 0 + 2 V ⋅ ⟨ w w ⟩ + ⟨ ∣ w ∣ 2 ⟩ V + ⟨ ∣ w ∣ 2 w ⟩ \begin{aligned}
\Expval{|\vb{v}|^2 \vb{v}}
&= \Expval{(\vb{V} \!+\! \vb{w}) \cdot (\vb{V} \!+\! \vb{w}) (\vb{V} \!+\! \vb{w})}
= \Expval{(|\vb{V}|^2 + 2 \vb{V} \cdot \vb{w} + |\vb{w}|^2) (\vb{V} \!+\! \vb{w})}
\\
&= \Expval{|\vb{V}|^2 \vb{V} + |\vb{V}|^2 \vb{w}
+ 2 (\vb{V} \cdot \vb{w}) \vb{V} + 2 (\vb{V} \cdot \vb{w}) \vb{w}
+ |\vb{w}|^2 \vb{V} + |\vb{w}|^2 \vb{w}}
\\
&= |\vb{V}|^2 \vb{V} + |\vb{V}|^2 \Expval{\vb{w}}
+ 2 (\vb{V} \cdot \Expval{\vb{w}}) \vb{V} + 2 \Expval{(\vb{V} \cdot \vb{w}) \vb{w}}
+ \Expval{|\vb{w}|^2} \vb{V} + \Expval{|\vb{w}|^2 \vb{w}}
\\
&= |\vb{V}|^2 \vb{V} + 0 + 0 + 2 \vb{V} \cdot \Expval{\vb{w} \vb{w}}
+ \Expval{|\vb{w}|^2} \vb{V} + \Expval{|\vb{w}|^2 \vb{w}}
\end{aligned} ⟨ ∣ v ∣ 2 v ⟩ = ⟨ ( V + w ) ⋅ ( V + w ) ( V + w ) ⟩ = ⟨ ( ∣ V ∣ 2 + 2 V ⋅ w + ∣ w ∣ 2 ) ( V + w ) ⟩ = ⟨ ∣ V ∣ 2 V + ∣ V ∣ 2 w + 2 ( V ⋅ w ) V + 2 ( V ⋅ w ) w + ∣ w ∣ 2 V + ∣ w ∣ 2 w ⟩ = ∣ V ∣ 2 V + ∣ V ∣ 2 ⟨ w ⟩ + 2 ( V ⋅ ⟨ w ⟩ ) V + 2 ⟨ ( V ⋅ w ) w ⟩ + ⟨ ∣ w ∣ 2 ⟩ V + ⟨ ∣ w ∣ 2 w ⟩ = ∣ V ∣ 2 V + 0 + 0 + 2 V ⋅ ⟨ ww ⟩ + ⟨ ∣ w ∣ 2 ⟩ V + ⟨ ∣ w ∣ 2 w ⟩
The third term is fairly obvious, but we calculate it rigorously just to be safe:
∂ ∣ v ∣ 2 ∂ v = ∂ ∂ v ( v x 2 + v y 2 + v z 2 ) = e ^ x ∂ v x 2 ∂ v x + e ^ y ∂ v y 2 ∂ v y + e ^ z ∂ v z 2 ∂ v z = 2 v \begin{aligned}
\pdv{|\vb{v}|^2}{\vb{v}}
&= \pdv{}{\vb{v}} \big( v_x^2 + v_y^2 + v_z^2 \big)
= \vu{e}_x \pdv{v_x^2}{v_x} + \vu{e}_y \pdv{v_y^2}{v_y} + \vu{e}_z \pdv{v_z^2}{v_z}
= 2 \vb{v}
\end{aligned} ∂ v ∂ ∣ v ∣ 2 = ∂ v ∂ ( v x 2 + v y 2 + v z 2 ) = e ^ x ∂ v x ∂ v x 2 + e ^ y ∂ v y ∂ v y 2 + e ^ z ∂ v z ∂ v z 2 = 2 v
To clarify the physical interpretation,
we define U U U , J \vb{J} J and P ^ \hat{P} P ^ as follows:
U ≡ ρ 2 ⟨ ∣ w ∣ 2 ⟩ = ρ 2 ⟨ ( v − V ) ⋅ ( v − V ) ⟩ J ≡ ρ 2 ⟨ ∣ w ∣ 2 w ⟩ = ρ 2 ⟨ ( v − V ) ⋅ ( v − V ) ( v − V ) ⟩ P ^ ≡ ρ ⟨ w w ⟩ = ρ ⟨ ( v − V ) ( v − V ) ⟩ \begin{aligned}
U
&\equiv \frac{\rho}{2} \Expval{|\vb{w}|^2}
= \frac{\rho}{2} \Expval{(\vb{v} \!-\! \vb{V}) \cdot (\vb{v} \!-\! \vb{V})}
\\
\vb{J}
&\equiv \frac{\rho}{2} \Expval{|\vb{w}|^2 \vb{w}}
= \frac{\rho}{2} \Expval{(\vb{v} \!-\! \vb{V}) \cdot (\vb{v} \!-\! \vb{V})(\vb{v} \!-\! \vb{V})}
\\
\hat{P}
&\equiv \rho \Expval{\vb{w} \vb{w}}
= \rho \Expval{(\vb{v} \!-\! \vb{V}) (\vb{v} \!-\! \vb{V})}
\end{aligned} U J P ^ ≡ 2 ρ ⟨ ∣ w ∣ 2 ⟩ = 2 ρ ⟨ ( v − V ) ⋅ ( v − V ) ⟩ ≡ 2 ρ ⟨ ∣ w ∣ 2 w ⟩ = 2 ρ ⟨ ( v − V ) ⋅ ( v − V ) ( v − V ) ⟩ ≡ ρ ⟨ ww ⟩ = ρ ⟨ ( v − V ) ( v − V ) ⟩
Putting it all together, we arrive at the expected result, namely:
0 = ∂ ∂ t ( ρ 2 ∣ V ∣ 2 + U ) + ∇ ⋅ ( ρ 2 ∣ V ∣ 2 V + V ⋅ P ^ + U V + J ) − F ⋅ ( n V ) \begin{aligned}
0
&= \pdv{}{t}\bigg(\frac{\rho}{2} |\vb{V}|^2 + U \bigg)
+ \nabla \cdot \bigg(\frac{\rho}{2} |\vb{V}|^2 \vb{V} + \vb{V} \cdot \hat{P} + U \vb{V} + \vb{J} \bigg)
- \vb{F} \cdot \big( n \vb{V} \big)
\end{aligned} 0 = ∂ t ∂ ( 2 ρ ∣ V ∣ 2 + U ) + ∇ ⋅ ( 2 ρ ∣ V ∣ 2 V + V ⋅ P ^ + U V + J ) − F ⋅ ( n V )
For the sake of clarity, we write out the pressure term, including the outer divergence:
∇ ⋅ ( V ⋅ P ^ ) = ( ∇ ⋅ P ^ ⊤ ) ⋅ V = ∇ ⋅ [ P x x P x y P x z P y x P y y P y z P z x P z y P z z ] ⋅ [ V x V y V z ] = [ ∂ P x x ∂ x + ∂ P x y ∂ y + ∂ P x z ∂ z ∂ P y x ∂ x + ∂ P y y ∂ y + ∂ P y z ∂ z ∂ P z x ∂ x + ∂ P z y ∂ y + ∂ P z z ∂ z ] ⊤ ⋅ [ V x V y V z ] = ∑ i = 1 3 ∑ j = 1 3 ∂ P i j ∂ x j V i \begin{aligned}
\nabla \cdot (\vb{V} \cdot \hat{P})
&= (\nabla \cdot \hat{P}{}^\top) \cdot \vb{V}
= \nabla \cdot
\begin{bmatrix}
P_{xx} & P_{xy} & P_{xz} \\
P_{yx} & P_{yy} & P_{yz} \\
P_{zx} & P_{zy} & P_{zz}
\end{bmatrix}
\cdot
\begin{bmatrix}
V_x \\ V_y \\ V_z
\end{bmatrix}
\\
&=
\begin{bmatrix}
\displaystyle \pdv{P_{xx}}{x} + \pdv{P_{xy}}{y} + \pdv{P_{xz}}{z} \\
\displaystyle \pdv{P_{yx}}{x} + \pdv{P_{yy}}{y} + \pdv{P_{yz}}{z} \\
\displaystyle \pdv{P_{zx}}{x} + \pdv{P_{zy}}{y} + \pdv{P_{zz}}{z}
\end{bmatrix}^{\top}
\cdot
\begin{bmatrix}
V_x \\ V_y \\ V_z
\end{bmatrix}
= \sum_{i=1}^{3} \sum_{j=1}^{3} \pdv{P_{ij}}{x_j} V_i
\end{aligned} ∇ ⋅ ( V ⋅ P ^ ) = ( ∇ ⋅ P ^ ⊤ ) ⋅ V = ∇ ⋅ P xx P y x P z x P x y P yy P zy P x z P yz P zz ⋅ V x V y V z = ∂ x ∂ P xx + ∂ y ∂ P x y + ∂ z ∂ P x z ∂ x ∂ P y x + ∂ y ∂ P yy + ∂ z ∂ P yz ∂ x ∂ P z x + ∂ y ∂ P zy + ∂ z ∂ P zz ⊤ ⋅ V x V y V z = i = 1 ∑ 3 j = 1 ∑ 3 ∂ x j ∂ P ij V i
References
M. Salewski, A.H. Nielsen,
Plasma physics: lecture notes ,
2021, unpublished.