Categories:
Physics ,
Quantum information ,
Quantum mechanics .
CHSH inequality
The Clauser-Horne-Shimony-Holt (CHSH) inequality
is an alternative proof of Bell’s theorem ,
which takes a slightly different approach
and is more useful in practice.
Suppose there is a local hidden variable (LHV) λ \lambda λ
with an unknown probability density ρ \rho ρ :
∫ ρ ( λ ) d λ = 1 ρ ( λ ) ≥ 0 \begin{aligned}
\int \rho(\lambda) \dd{\lambda} = 1
\qquad \quad
\rho(\lambda) \ge 0
\end{aligned} ∫ ρ ( λ ) d λ = 1 ρ ( λ ) ≥ 0
Given two spin-1/2 particles A A A and B B B ,
measuring their spins along arbitrary directions a ⃗ \vec{a} a and b ⃗ \vec{b} b
would give each an eigenvalue ± 1 \pm 1 ± 1 . We write this as:
A ( a ⃗ , λ ) = ± 1 B ( b ⃗ , λ ) = ± 1 \begin{aligned}
A(\vec{a}, \lambda) = \pm 1
\qquad \quad
B(\vec{b}, \lambda) = \pm 1
\end{aligned} A ( a , λ ) = ± 1 B ( b , λ ) = ± 1
If A A A and B B B start in an entangled Bell state ,
e.g. ∣ Ψ − ⟩ \ket{\Psi^{-}} ∣ Ψ − ⟩ , then we expect a correlation between their measurements results.
The product of the outcomes of A A A and B B B is:
⟨ A a B b ⟩ ≡ ∫ ρ ( λ ) A ( a ⃗ , λ ) B ( b ⃗ , λ ) d λ \begin{aligned}
\Expval{A_a B_b}
\equiv \int \rho(\lambda) \: A(\vec{a}, \lambda) \: B(\vec{b}, \lambda) \dd{\lambda}
\end{aligned} ⟨ A a B b ⟩ ≡ ∫ ρ ( λ ) A ( a , λ ) B ( b , λ ) d λ
So far, we have taken the same path as for proving Bell’s inequality,
but for the CHSH inequality we must now diverge.
Deriving the inequality
Consider four spin directions, two for A A A called a ⃗ 1 \vec{a}_1 a 1 and a ⃗ 2 \vec{a}_2 a 2 ,
and two for B B B called b ⃗ 1 \vec{b}_1 b 1 and b ⃗ 2 \vec{b}_2 b 2 .
Let us introduce the following abbreviations:
A 1 ≡ A ( a ⃗ 1 , λ ) A 2 ≡ A ( a ⃗ 2 , λ ) B 1 ≡ B ( b ⃗ 1 , λ ) B 2 ≡ B ( b ⃗ 2 , λ ) \begin{aligned}
A_1 \equiv A(\vec{a}_1, \lambda)
\qquad \quad
A_2 \equiv A(\vec{a}_2, \lambda)
\qquad \quad
B_1 \equiv B(\vec{b}_1, \lambda)
\qquad \quad
B_2 \equiv B(\vec{b}_2, \lambda)
\end{aligned} A 1 ≡ A ( a 1 , λ ) A 2 ≡ A ( a 2 , λ ) B 1 ≡ B ( b 1 , λ ) B 2 ≡ B ( b 2 , λ )
From the definition of the expectation value,
we know that the difference is given by:
⟨ A 1 B 1 ⟩ − ⟨ A 1 B 2 ⟩ = ∫ ρ ( λ ) ( A 1 B 1 − A 1 B 2 ) d λ \begin{aligned}
\Expval{A_1 B_1} - \Expval{A_1 B_2}
= \int \rho(\lambda) \Big( A_1 B_1 - A_1 B_2 \Big) \dd{\lambda}
\end{aligned} ⟨ A 1 B 1 ⟩ − ⟨ A 1 B 2 ⟩ = ∫ ρ ( λ ) ( A 1 B 1 − A 1 B 2 ) d λ
We introduce some new terms and rearrange the resulting expression:
⟨ A 1 B 1 ⟩ − ⟨ A 1 B 2 ⟩ = ∫ ρ ( λ ) ( A 1 B 1 − A 1 B 2 ± A 1 B 1 A 2 B 2 ∓ A 1 B 1 A 2 B 2 ) d λ = ∫ ρ ( λ ) A 1 B 1 ( 1 ± A 2 B 2 ) d λ − ∫ ρ ( λ ) A 1 B 2 ( 1 ± A 2 B 1 ) d λ \begin{aligned}
\Expval{A_1 B_1} - \Expval{A_1 B_2}
&= \int \rho(\lambda) \Big( A_1 B_1 - A_1 B_2 \pm A_1 B_1 A_2 B_2 \mp A_1 B_1 A_2 B_2 \Big) \dd{\lambda}
\\
&= \int \rho(\lambda) A_1 B_1 \Big( 1 \pm A_2 B_2 \Big) \dd{\lambda}
- \!\int \rho(\lambda) A_1 B_2 \Big( 1 \pm A_2 B_1 \Big) \dd{\lambda}
\end{aligned} ⟨ A 1 B 1 ⟩ − ⟨ A 1 B 2 ⟩ = ∫ ρ ( λ ) ( A 1 B 1 − A 1 B 2 ± A 1 B 1 A 2 B 2 ∓ A 1 B 1 A 2 B 2 ) d λ = ∫ ρ ( λ ) A 1 B 1 ( 1 ± A 2 B 2 ) d λ − ∫ ρ ( λ ) A 1 B 2 ( 1 ± A 2 B 1 ) d λ
Taking the absolute value of both sides
and invoking the triangle inequality then yields:
∣ ⟨ A 1 B 1 ⟩ − ⟨ A 1 B 2 ⟩ ∣ = ∣ ∫ ρ ( λ ) A 1 B 1 ( 1 ± A 2 B 2 ) d λ − ∫ ρ ( λ ) A 1 B 2 ( 1 ± A 2 B 1 ) d λ ∣ ≤ ∣ ∫ ρ ( λ ) A 1 B 1 ( 1 ± A 2 B 2 ) d λ ∣ + ∣ ∫ ρ ( λ ) A 1 B 2 ( 1 ± A 2 B 1 ) d λ ∣ \begin{aligned}
\Big| \Expval{A_1 B_1} - \Expval{A_1 B_2} \Big|
&= \bigg|\! \int \rho(\lambda) A_1 B_1 \Big( 1 \pm A_2 B_2 \Big) \dd{\lambda}
- \!\int \rho(\lambda) A_1 B_2 \Big( 1 \pm A_2 B_1 \Big) \dd{\lambda} \!\bigg|
\\
&\le \bigg|\! \int \rho(\lambda) A_1 B_1 \Big( 1 \pm A_2 B_2 \Big) \dd{\lambda} \!\bigg|
+ \bigg|\! \int \rho(\lambda) A_1 B_2 \Big( 1 \pm A_2 B_1 \Big) \dd{\lambda} \!\bigg|
\end{aligned} ⟨ A 1 B 1 ⟩ − ⟨ A 1 B 2 ⟩ = ∫ ρ ( λ ) A 1 B 1 ( 1 ± A 2 B 2 ) d λ − ∫ ρ ( λ ) A 1 B 2 ( 1 ± A 2 B 1 ) d λ ≤ ∫ ρ ( λ ) A 1 B 1 ( 1 ± A 2 B 2 ) d λ + ∫ ρ ( λ ) A 1 B 2 ( 1 ± A 2 B 1 ) d λ
Using the fact that the product of the spin eigenvalues of A A A and B B B
is always either − 1 -1 − 1 or + 1 +1 + 1 for all directions,
we can reduce this to:
∣ ⟨ A 1 B 1 ⟩ − ⟨ A 1 B 2 ⟩ ∣ ≤ ∫ ρ ( λ ) ∣ A 1 B 1 ∣ ( 1 ± A 2 B 2 ) d λ + ∫ ρ ( λ ) ∣ A 1 B 2 ∣ ( 1 ± A 2 B 1 ) d λ ≤ ∫ ρ ( λ ) ( 1 ± A 2 B 2 ) d λ + ∫ ρ ( λ ) ( 1 ± A 2 B 1 ) d λ \begin{aligned}
\Big| \Expval{A_1 B_1} - \Expval{A_1 B_2} \Big|
&\le \int \rho(\lambda) \Big| A_1 B_1 \Big| \Big( 1 \pm A_2 B_2 \Big) \dd{\lambda}
+ \!\int \rho(\lambda) \Big| A_1 B_2 \Big| \Big( 1 \pm A_2 B_1 \Big) \dd{\lambda}
\\
&\le \int \rho(\lambda) \Big( 1 \pm A_2 B_2 \Big) \dd{\lambda}
+ \!\int \rho(\lambda) \Big( 1 \pm A_2 B_1 \Big) \dd{\lambda}
\end{aligned} ⟨ A 1 B 1 ⟩ − ⟨ A 1 B 2 ⟩ ≤ ∫ ρ ( λ ) A 1 B 1 ( 1 ± A 2 B 2 ) d λ + ∫ ρ ( λ ) A 1 B 2 ( 1 ± A 2 B 1 ) d λ ≤ ∫ ρ ( λ ) ( 1 ± A 2 B 2 ) d λ + ∫ ρ ( λ ) ( 1 ± A 2 B 1 ) d λ
Evaluating these integrals gives us the following inequality,
which holds for both choices of ± \pm ± :
∣ ⟨ A 1 B 1 ⟩ − ⟨ A 1 B 2 ⟩ ∣ ≤ 2 ± ⟨ A 2 B 2 ⟩ ± ⟨ A 2 B 1 ⟩ \begin{aligned}
\Big| \Expval{A_1 B_1} - \Expval{A_1 B_2} \Big|
&\le 2 \pm \Expval{A_2 B_2} \pm \Expval{A_2 B_1}
\end{aligned} ⟨ A 1 B 1 ⟩ − ⟨ A 1 B 2 ⟩ ≤ 2 ± ⟨ A 2 B 2 ⟩ ± ⟨ A 2 B 1 ⟩
We should choose the signs such that the right-hand side is as small as possible, that is:
∣ ⟨ A 1 B 1 ⟩ − ⟨ A 1 B 2 ⟩ ∣ ≤ 2 ± ( ⟨ A 2 B 2 ⟩ + ⟨ A 2 B 1 ⟩ ) ≤ 2 − ∣ ⟨ A 2 B 2 ⟩ + ⟨ A 2 B 1 ⟩ ∣ \begin{aligned}
\Big| \Expval{A_1 B_1} - \Expval{A_1 B_2} \Big|
&\le 2 \pm \Big( \Expval{A_2 B_2} + \Expval{A_2 B_1} \Big)
\\
&\le 2 - \Big| \Expval{A_2 B_2} + \Expval{A_2 B_1} \Big|
\end{aligned} ⟨ A 1 B 1 ⟩ − ⟨ A 1 B 2 ⟩ ≤ 2 ± ( ⟨ A 2 B 2 ⟩ + ⟨ A 2 B 1 ⟩ ) ≤ 2 − ⟨ A 2 B 2 ⟩ + ⟨ A 2 B 1 ⟩
Rearranging this and once again using the triangle inequality,
we get the CHSH inequality:
2 ≥ ∣ ⟨ A 1 B 1 ⟩ − ⟨ A 1 B 2 ⟩ ∣ + ∣ ⟨ A 2 B 2 ⟩ + ⟨ A 2 B 1 ⟩ ∣ ≥ ∣ ⟨ A 1 B 1 ⟩ − ⟨ A 1 B 2 ⟩ + ⟨ A 2 B 2 ⟩ + ⟨ A 2 B 1 ⟩ ∣ \begin{aligned}
2
&\ge \Big| \Expval{A_1 B_1} - \Expval{A_1 B_2} \Big| + \Big| \Expval{A_2 B_2} + \Expval{A_2 B_1} \Big|
\\
&\ge \Big| \Expval{A_1 B_1} - \Expval{A_1 B_2} + \Expval{A_2 B_2} + \Expval{A_2 B_1} \Big|
\end{aligned} 2 ≥ ⟨ A 1 B 1 ⟩ − ⟨ A 1 B 2 ⟩ + ⟨ A 2 B 2 ⟩ + ⟨ A 2 B 1 ⟩ ≥ ⟨ A 1 B 1 ⟩ − ⟨ A 1 B 2 ⟩ + ⟨ A 2 B 2 ⟩ + ⟨ A 2 B 1 ⟩
The quantity on the right-hand side is sometimes called the CHSH quantity S S S ,
and measures the correlation between the spins of A A A and B B B :
S ≡ ⟨ A 2 B 1 ⟩ + ⟨ A 2 B 2 ⟩ + ⟨ A 1 B 1 ⟩ − ⟨ A 1 B 2 ⟩ \begin{aligned}
\boxed{
S \equiv \Expval{A_2 B_1} + \Expval{A_2 B_2} + \Expval{A_1 B_1} - \Expval{A_1 B_2}
}
\end{aligned} S ≡ ⟨ A 2 B 1 ⟩ + ⟨ A 2 B 2 ⟩ + ⟨ A 1 B 1 ⟩ − ⟨ A 1 B 2 ⟩
The CHSH inequality places an upper bound on the magnitude of S S S
for LHV-based theories:
∣ S ∣ ≤ 2 \begin{aligned}
\boxed{
|S| \le 2
}
\end{aligned} ∣ S ∣ ≤ 2
Tsirelson’s bound
Quantum physics can violate the CHSH inequality, but by how much?
Consider the following two-particle operator,
whose expectation value is the CHSH quantity, i.e. S = ⟨ S ^ ⟩ S = \expval{\hat{S}} S = ⟨ S ^ ⟩ :
S ^ = A ^ 2 ⊗ B ^ 1 + A ^ 2 ⊗ B ^ 2 + A ^ 1 ⊗ B ^ 1 − A ^ 1 ⊗ B ^ 2 \begin{aligned}
\hat{S}
= \hat{A}_2 \otimes \hat{B}_1 + \hat{A}_2 \otimes \hat{B}_2 + \hat{A}_1 \otimes \hat{B}_1 - \hat{A}_1 \otimes \hat{B}_2
\end{aligned} S ^ = A ^ 2 ⊗ B ^ 1 + A ^ 2 ⊗ B ^ 2 + A ^ 1 ⊗ B ^ 1 − A ^ 1 ⊗ B ^ 2
Where ⊗ \otimes ⊗ is the tensor product,
and e.g. A ^ 1 \hat{A}_1 A ^ 1 is the Pauli matrix for the a ⃗ 1 \vec{a}_1 a 1 -direction.
The square of this operator is then given by:
S ^ 2 = A ^ 2 2 ⊗ B ^ 1 2 + A ^ 2 2 ⊗ B ^ 1 B ^ 2 + A ^ 2 A ^ 1 ⊗ B ^ 1 2 − A ^ 2 A ^ 1 ⊗ B ^ 1 B ^ 2 + A ^ 2 2 ⊗ B ^ 2 B ^ 1 + A ^ 2 2 ⊗ B ^ 2 2 + A ^ 2 A ^ 1 ⊗ B ^ 2 B ^ 1 − A ^ 2 A ^ 1 ⊗ B ^ 2 2 + A ^ 1 A ^ 2 ⊗ B ^ 1 2 + A ^ 1 A ^ 2 ⊗ B ^ 1 B ^ 2 + A ^ 1 2 ⊗ B ^ 1 2 − A ^ 1 2 ⊗ B ^ 1 B ^ 2 − A ^ 1 A ^ 2 ⊗ B ^ 2 B ^ 1 − A ^ 1 A ^ 2 ⊗ B ^ 2 2 − A ^ 1 2 ⊗ B ^ 2 B ^ 1 + A ^ 1 2 ⊗ B ^ 2 2 = A ^ 2 2 ⊗ B ^ 1 2 + A ^ 2 2 ⊗ B ^ 2 2 + A ^ 1 2 ⊗ B ^ 1 2 + A ^ 1 2 ⊗ B ^ 2 2 + A ^ 2 2 ⊗ { B ^ 1 , B ^ 2 } − A ^ 1 2 ⊗ { B ^ 1 , B ^ 2 } + { A ^ 1 , A ^ 2 } ⊗ B ^ 1 2 − { A ^ 1 , A ^ 2 } ⊗ B ^ 2 2 + A ^ 1 A ^ 2 ⊗ [ B ^ 1 , B ^ 2 ] − A ^ 2 A ^ 1 ⊗ [ B ^ 1 , B ^ 2 ] \begin{aligned}
\hat{S}^2
= \quad &\hat{A}_2^2 \otimes \hat{B}_1^2 + \hat{A}_2^2 \otimes \hat{B}_1 \hat{B}_2
+ \hat{A}_2 \hat{A}_1 \otimes \hat{B}_1^2 - \hat{A}_2 \hat{A}_1 \otimes \hat{B}_1 \hat{B}_2
\\
+ &\hat{A}_2^2 \otimes \hat{B}_2 \hat{B}_1 + \hat{A}_2^2 \otimes \hat{B}_2^2
+ \hat{A}_2 \hat{A}_1 \otimes \hat{B}_2 \hat{B}_1 - \hat{A}_2 \hat{A}_1 \otimes \hat{B}_2^2
\\
+ &\hat{A}_1 \hat{A}_2 \otimes \hat{B}_1^2 + \hat{A}_1 \hat{A}_2 \otimes \hat{B}_1 \hat{B}_2
+ \hat{A}_1^2 \otimes \hat{B}_1^2 - \hat{A}_1^2 \otimes \hat{B}_1 \hat{B}_2
\\
- &\hat{A}_1 \hat{A}_2 \otimes \hat{B}_2 \hat{B}_1 - \hat{A}_1 \hat{A}_2 \otimes \hat{B}_2^2
- \hat{A}_1^2 \otimes \hat{B}_2 \hat{B}_1 + \hat{A}_1^2 \otimes \hat{B}_2^2
\\
= \quad &\hat{A}_2^2 \otimes \hat{B}_1^2 + \hat{A}_2^2 \otimes \hat{B}_2^2 + \hat{A}_1^2 \otimes \hat{B}_1^2 + \hat{A}_1^2 \otimes \hat{B}_2^2
\\
+ &\hat{A}_2^2 \otimes \acomm{\hat{B}_1}{\hat{B}_2} - \hat{A}_1^2 \otimes \acomm{\hat{B}_1}{\hat{B}_2}
+ \acomm{\hat{A}_1}{\hat{A}_2} \otimes \hat{B}_1^2 - \acomm{\hat{A}_1}{\hat{A}_2} \otimes \hat{B}_2^2
\\
+ &\hat{A}_1 \hat{A}_2 \otimes \comm{\hat{B}_1}{\hat{B}_2} - \hat{A}_2 \hat{A}_1 \otimes \comm{\hat{B}_1}{\hat{B}_2}
\end{aligned} S ^ 2 = + + − = + + A ^ 2 2 ⊗ B ^ 1 2 + A ^ 2 2 ⊗ B ^ 1 B ^ 2 + A ^ 2 A ^ 1 ⊗ B ^ 1 2 − A ^ 2 A ^ 1 ⊗ B ^ 1 B ^ 2 A ^ 2 2 ⊗ B ^ 2 B ^ 1 + A ^ 2 2 ⊗ B ^ 2 2 + A ^ 2 A ^ 1 ⊗ B ^ 2 B ^ 1 − A ^ 2 A ^ 1 ⊗ B ^ 2 2 A ^ 1 A ^ 2 ⊗ B ^ 1 2 + A ^ 1 A ^ 2 ⊗ B ^ 1 B ^ 2 + A ^ 1 2 ⊗ B ^ 1 2 − A ^ 1 2 ⊗ B ^ 1 B ^ 2 A ^ 1 A ^ 2 ⊗ B ^ 2 B ^ 1 − A ^ 1 A ^ 2 ⊗ B ^ 2 2 − A ^ 1 2 ⊗ B ^ 2 B ^ 1 + A ^ 1 2 ⊗ B ^ 2 2 A ^ 2 2 ⊗ B ^ 1 2 + A ^ 2 2 ⊗ B ^ 2 2 + A ^ 1 2 ⊗ B ^ 1 2 + A ^ 1 2 ⊗ B ^ 2 2 A ^ 2 2 ⊗ { B ^ 1 , B ^ 2 } − A ^ 1 2 ⊗ { B ^ 1 , B ^ 2 } + { A ^ 1 , A ^ 2 } ⊗ B ^ 1 2 − { A ^ 1 , A ^ 2 } ⊗ B ^ 2 2 A ^ 1 A ^ 2 ⊗ [ B ^ 1 , B ^ 2 ] − A ^ 2 A ^ 1 ⊗ [ B ^ 1 , B ^ 2 ]
Spin operators are unitary, so their square is the identity,
e.g. A ^ 1 2 = I ^ \hat{A}_1^2 = \hat{I} A ^ 1 2 = I ^ . Therefore S ^ 2 \hat{S}^2 S ^ 2 reduces to:
S ^ 2 = 4 ( I ^ ⊗ I ^ ) + [ A ^ 1 , A ^ 2 ] ⊗ [ B ^ 1 , B ^ 2 ] \begin{aligned}
\hat{S}^2
&= 4 \: (\hat{I} \otimes \hat{I}) + \comm{\hat{A}_1}{\hat{A}_2} \otimes \comm{\hat{B}_1}{\hat{B}_2}
\end{aligned} S ^ 2 = 4 ( I ^ ⊗ I ^ ) + [ A ^ 1 , A ^ 2 ] ⊗ [ B ^ 1 , B ^ 2 ]
The norm ∥ S ^ 2 ∥ \norm{\hat{S}^2} S ^ 2 of this operator
is the largest possible expectation value ⟨ S ^ 2 ⟩ \expval{\hat{S}^2} ⟨ S ^ 2 ⟩ ,
which is the same as its largest eigenvalue.
It is given by:
∥ S ^ 2 ∥ = 4 + ∥ [ A ^ 1 , A ^ 2 ] ⊗ [ B ^ 1 , B ^ 2 ] ∥ ≤ 4 + ∥ [ A ^ 1 , A ^ 2 ] ∥ ∥ [ B ^ 1 , B ^ 2 ] ∥ \begin{aligned}
\Norm{\hat{S}^2}
&= 4 + \Norm{\comm{\hat{A}_1}{\hat{A}_2} \otimes \comm{\hat{B}_1}{\hat{B}_2}}
\\
&\le 4 + \Norm{\comm{\hat{A}_1}{\hat{A}_2}} \Norm{\comm{\hat{B}_1}{\hat{B}_2}}
\end{aligned} S ^ 2 = 4 + [ A ^ 1 , A ^ 2 ] ⊗ [ B ^ 1 , B ^ 2 ] ≤ 4 + [ A ^ 1 , A ^ 2 ] [ B ^ 1 , B ^ 2 ]
We find a bound for the norm of the commutators by using the triangle inequality, such that:
∥ [ A ^ 1 , A ^ 2 ] ∥ = ∥ A ^ 1 A ^ 2 − A ^ 2 A ^ 1 ∥ ≤ ∥ A ^ 1 A ^ 2 ∥ + ∥ A ^ 2 A ^ 1 ∥ ≤ 2 ∥ A ^ 1 A ^ 2 ∥ ≤ 2 \begin{aligned}
\Norm{\comm{\hat{A}_1}{\hat{A}_2}}
= \Norm{\hat{A}_1 \hat{A}_2 - \hat{A}_2 \hat{A}_1}
\le \Norm{\hat{A}_1 \hat{A}_2} + \Norm{\hat{A}_2 \hat{A}_1}
\le 2 \Norm{\hat{A}_1 \hat{A}_2}
\le 2
\end{aligned} [ A ^ 1 , A ^ 2 ] = A ^ 1 A ^ 2 − A ^ 2 A ^ 1 ≤ A ^ 1 A ^ 2 + A ^ 2 A ^ 1 ≤ 2 A ^ 1 A ^ 2 ≤ 2
And ∥ [ B ^ 1 , B ^ 2 ] ∥ ≤ 2 \norm{\comm{\hat{B}_1}{\hat{B}_2}} \le 2 [ B ^ 1 , B ^ 2 ] ≤ 2 for the same reason.
The norm is the largest eigenvalue, therefore:
∥ S ^ 2 ∥ ≤ 4 + 2 ⋅ 2 = 8 ⟹ ∥ S ^ ∥ ≤ 8 = 2 2 \begin{aligned}
\Norm{\hat{S}^2}
\le 4 + 2 \cdot 2
= 8
\quad \implies \quad
\Norm{\hat{S}}
\le \sqrt{8}
= 2 \sqrt{2}
\end{aligned} S ^ 2 ≤ 4 + 2 ⋅ 2 = 8 ⟹ S ^ ≤ 8 = 2 2
We thus arrive at Tsirelson’s bound ,
which states that quantum mechanics can violate
the CHSH inequality by a factor of 2 \sqrt{2} 2 :
∣ S ∣ ≤ 2 2 \begin{aligned}
\boxed{
|S|
\le 2 \sqrt{2}
}
\end{aligned} ∣ S ∣ ≤ 2 2
Importantly, this is a tight bound,
meaning that there exist certain spin measurement directions
for which Tsirelson’s bound becomes an equality, for example:
A ^ 1 = σ ^ z A ^ 2 = σ ^ x B ^ 1 = σ ^ z + σ ^ x 2 B ^ 2 = σ ^ z − σ ^ x 2 \begin{aligned}
\hat{A}_1 = \hat{\sigma}_z
\qquad
\hat{A}_2 = \hat{\sigma}_x
\qquad
\hat{B}_1 = \frac{\hat{\sigma}_z + \hat{\sigma}_x}{\sqrt{2}}
\qquad
\hat{B}_2 = \frac{\hat{\sigma}_z - \hat{\sigma}_x}{\sqrt{2}}
\end{aligned} A ^ 1 = σ ^ z A ^ 2 = σ ^ x B ^ 1 = 2 σ ^ z + σ ^ x B ^ 2 = 2 σ ^ z − σ ^ x
Fundamental quantum mechanics says that
⟨ A a B b ⟩ = − a ⃗ ⋅ b ⃗ \Expval{A_a B_b} = - \vec{a} \cdot \vec{b} ⟨ A a B b ⟩ = − a ⋅ b ,
so S = 2 2 S = 2 \sqrt{2} S = 2 2 in this case.
References
D.J. Griffiths, D.F. Schroeter,
Introduction to quantum mechanics , 3rd edition,
Cambridge.
J.B. Brask,
Quantum information: lecture notes ,
2021, unpublished.