Categories:
Mathematics ,
Physics .
Dirac delta function
The Dirac delta function δ ( x ) \delta(x) δ ( x ) , often just the delta function ,
is a function (or, more accurately, a Schwartz distribution )
that is commonly used in physics.
It is an infinitely narrow discontinuous “spike” at x = 0 x = 0 x = 0 whose area is
defined to be 1:
δ ( x ) ≡ { + ∞ i f x = 0 0 i f x ≠ 0 a n d ∫ − ε ε δ ( x ) d x = 1 \begin{aligned}
\boxed{
\delta(x) \equiv
\begin{cases}
+\infty & \mathrm{if}\: x = 0 \\
0 & \mathrm{if}\: x \neq 0
\end{cases}
\quad \mathrm{and} \quad
\int_{-\varepsilon}^\varepsilon \delta(x) \dd{x} = 1
}
\end{aligned} δ ( x ) ≡ { + ∞ 0 if x = 0 if x = 0 and ∫ − ε ε δ ( x ) d x = 1
It is sometimes also called the sampling function , thanks to its most
important property: the so-called sampling property :
∫ f ( x ) δ ( x − x 0 ) d x = ∫ f ( x ) δ ( x 0 − x ) d x = f ( x 0 ) \begin{aligned}
\boxed{
\int f(x) \: \delta(x - x_0) \: dx = \int f(x) \: \delta(x_0 - x) \: dx = f(x_0)
}
\end{aligned} ∫ f ( x ) δ ( x − x 0 ) d x = ∫ f ( x ) δ ( x 0 − x ) d x = f ( x 0 )
δ ( x ) \delta(x) δ ( x ) is thus quite an effective weapon against integrals. This may not seem very
useful due to its “unnatural” definition, but in fact it appears as the
limit of several reasonable functions:
δ ( x ) = lim n → + ∞ { n π exp ( − n 2 x 2 ) } = lim n → + ∞ { n π 1 1 + n 2 x 2 } = lim n → + ∞ { sin ( n x ) π x } \begin{aligned}
\delta(x)
= \lim_{n \to +\infty} \!\Big\{ \frac{n}{\sqrt{\pi}} \exp(- n^2 x^2) \Big\}
= \lim_{n \to +\infty} \!\Big\{ \frac{n}{\pi} \frac{1}{1 + n^2 x^2} \Big\}
= \lim_{n \to +\infty} \!\Big\{ \frac{\sin(n x)}{\pi x} \Big\}
\end{aligned} δ ( x ) = n → + ∞ lim { π n exp ( − n 2 x 2 ) } = n → + ∞ lim { π n 1 + n 2 x 2 1 } = n → + ∞ lim { π x sin ( n x ) }
The last one is especially important, since it is equivalent to the
following integral, which appears very often in the context of
Fourier transforms :
δ ( x ) = lim n → + ∞ { sin ( n x ) π x } = 1 2 π ∫ − ∞ ∞ exp ( i k x ) d k ∝ F ^ { 1 } \begin{aligned}
\delta(x)
= \lim_{n \to +\infty} \!\Big\{\frac{\sin(n x)}{\pi x}\Big\}
= \frac{1}{2\pi} \int_{-\infty}^\infty \exp(i k x) \dd{k}
\:\:\propto\:\: \hat{\mathcal{F}}\{1\}
\end{aligned} δ ( x ) = n → + ∞ lim { π x sin ( n x ) } = 2 π 1 ∫ − ∞ ∞ exp ( ik x ) d k ∝ F ^ { 1 }
When the argument of δ ( x ) \delta(x) δ ( x ) is scaled, the delta function is itself scaled:
δ ( s x ) = 1 ∣ s ∣ δ ( x ) \begin{aligned}
\boxed{
\delta(s x) = \frac{1}{|s|} \delta(x)
}
\end{aligned} δ ( s x ) = ∣ s ∣ 1 δ ( x )
An even more impressive property is the behaviour of the derivative of δ ( x ) \delta(x) δ ( x ) :
∫ f ( ξ ) δ ′ ( x − ξ ) d ξ = f ′ ( x ) \begin{aligned}
\boxed{
\int f(\xi) \: \delta'(x - \xi) \dd{\xi} = f'(x)
}
\end{aligned} ∫ f ( ξ ) δ ′ ( x − ξ ) d ξ = f ′ ( x )
This property also generalizes nicely for the higher-order derivatives:
∫ f ( ξ ) d n δ ( x − ξ ) d x n d ξ = d n f ( x ) d x n \begin{aligned}
\boxed{
\int f(\xi) \: \dvn{n}{\delta(x - \xi)}{x} \dd{\xi} = \dvn{n}{f(x)}{x}
}
\end{aligned} ∫ f ( ξ ) d x n d n δ ( x − ξ ) d ξ = d x n d n f ( x )
References
O. Bang,
Applied mathematics for physicists: lecture notes , 2019,
unpublished.