Categories:
Physics ,
Quantum mechanics .
Equation-of-motion theory
In many-body quantum theory, equation-of-motion theory
is a method to calculate the time evolution of a system’s properties
using Green’s functions .
Starting from the definition of
the retarded single-particle Green’s function G ν ν ′ R ( t , t ′ ) G_{\nu \nu'}^R(t, t') G ν ν ′ R ( t , t ′ ) ,
we simply take the t t t -derivative
(we could do the same with the advanced function G ν ν ′ A G_{\nu \nu'}^A G ν ν ′ A ):
i ℏ ∂ G ν ν ′ R ( t , t ′ ) ∂ t = ∂ Θ ( t − t ′ ) ∂ t ⟨ [ c ^ ν ( t ) , c ^ ν ′ † ( t ′ ) ] ∓ ⟩ + Θ ( t − t ′ ) ∂ ∂ t ⟨ [ c ^ ν ( t ) , c ^ ν ′ † ( t ′ ) ] ∓ ⟩ = δ ( t − t ′ ) ⟨ [ c ^ ν ( t ) , c ^ ν ′ † ( t ′ ) ] ∓ ⟩ + Θ ( t − t ′ ) ⟨ [ d c ^ ν ( t ) d t , c ^ ν ′ † ( t ) ] ∓ ⟩ \begin{aligned}
i \hbar \pdv{G^R_{\nu \nu'}(t, t')}{t}
&= \pdv{\Theta(t \!-\! t')}{t} \Expval{\comm{\hat{c}_\nu(t)}{\hat{c}_{\nu'}^\dagger(t')}_{\mp}}
+ \Theta(t \!-\! t') \pdv{}{t}\Expval{\comm{\hat{c}_\nu(t)}{\hat{c}_{\nu'}^\dagger(t')}_{\mp}}
\\
&= \delta(t \!-\! t') \Expval{\comm{\hat{c}_\nu(t)}{\hat{c}_{\nu'}^\dagger(t')}_{\mp}}
+ \Theta(t \!-\! t') \Expval{\Comm{\dv{\hat{c}_\nu(t)}{t}}{\hat{c}_{\nu'}^\dagger(t)}_{\mp}}
\end{aligned} i ℏ ∂ t ∂ G ν ν ′ R ( t , t ′ ) = ∂ t ∂ Θ ( t − t ′ ) ⟨ [ c ^ ν ( t ) , c ^ ν ′ † ( t ′ ) ] ∓ ⟩ + Θ ( t − t ′ ) ∂ t ∂ ⟨ [ c ^ ν ( t ) , c ^ ν ′ † ( t ′ ) ] ∓ ⟩ = δ ( t − t ′ ) ⟨ [ c ^ ν ( t ) , c ^ ν ′ † ( t ′ ) ] ∓ ⟩ + Θ ( t − t ′ ) ⟨ [ d t d c ^ ν ( t ) , c ^ ν ′ † ( t ) ] ∓ ⟩
Where we have used that the derivative
of a Heaviside step function Θ \Theta Θ
is a Dirac delta function δ \delta δ .
Also, from the second quantization ,
⟨ [ c ^ ν ( t ) , c ^ ν ′ † ( t ′ ) ] ∓ ⟩ \expval{\comm{\hat{c}_\nu(t)}{\hat{c}_{\nu'}^\dagger(t')}_{\mp}} ⟨ [ c ^ ν ( t ) , c ^ ν ′ † ( t ′ ) ] ∓ ⟩
for t = t ′ t = t' t = t ′ is zero when ν ≠ ν ′ \nu \neq \nu' ν = ν ′ .
Since we are in the Heisenberg picture ,
we know the equation of motion of c ^ ν ( t ) \hat{c}_\nu(t) c ^ ν ( t ) :
d c ^ ν ( t ) d t = i ℏ [ H ^ 0 ( t ) , c ^ ν ( t ) ] + i ℏ [ H ^ i n t ( t ) , c ^ ν ( t ) ] \begin{aligned}
\dv{\hat{c}_\nu(t)}{t}
= \frac{i}{\hbar} \comm{\hat{H}_0(t)}{\hat{c}_\nu(t)} + \frac{i}{\hbar} \comm{\hat{H}_\mathrm{int}(t)}{\hat{c}_\nu(t)}
\end{aligned} d t d c ^ ν ( t ) = ℏ i [ H ^ 0 ( t ) , c ^ ν ( t ) ] + ℏ i [ H ^ int ( t ) , c ^ ν ( t ) ]
Where the single-particle part of the Hamiltonian H ^ 0 \hat{H}_0 H ^ 0
and the interaction part H ^ i n t \hat{H}_\mathrm{int} H ^ int
are assumed to be time-independent in the Schrödinger picture.
We thus get:
i ℏ ∂ G ν ν ′ R ∂ t = δ ν ν ′ δ ( t − t ′ ) + i ℏ Θ ( t − t ′ ) ⟨ [ [ H ^ 0 , c ^ ν ] + [ H ^ i n t , c ^ ν ] , c ^ ν ′ † ] ∓ ⟩ \begin{aligned}
i \hbar \pdv{G^R_{\nu \nu'}}{t}
&= \delta_{\nu \nu'} \delta(t \!-\! t')+ \frac{i}{\hbar} \Theta(t \!-\! t')
\Expval{\Comm{\comm{\hat{H}_0}{\hat{c}_\nu} + \comm{\hat{H}_\mathrm{int}}{\hat{c}_\nu}}{\hat{c}_{\nu'}^\dagger}_{\mp}}
\end{aligned} i ℏ ∂ t ∂ G ν ν ′ R = δ ν ν ′ δ ( t − t ′ ) + ℏ i Θ ( t − t ′ ) ⟨ [ [ H ^ 0 , c ^ ν ] + [ H ^ int , c ^ ν ] , c ^ ν ′ † ] ∓ ⟩
The most general form of H ^ 0 \hat{H}_0 H ^ 0 , for any basis,
is as follows, where u ν ′ ν ′ ′ u_{\nu' \nu''} u ν ′ ν ′′ are constants:
H ^ 0 = ∑ ν ′ ν ′ ′ u ν ′ ν ′ ′ c ^ ν ′ † c ^ ν ′ ′ ⟹ [ H ^ 0 , c ^ ν ] = − ∑ ν ′ ′ u ν ν ′ ′ c ^ ν ′ ′ \begin{aligned}
\hat{H}_0
= \sum_{\nu' \nu''} u_{\nu' \nu''} \hat{c}_{\nu'}^\dagger \hat{c}_{\nu''}
\quad \implies \quad
\comm{\hat{H}_0}{\hat{c}_\nu}
= - \sum_{\nu''} u_{\nu \nu''} \hat{c}_{\nu''}
\end{aligned} H ^ 0 = ν ′ ν ′′ ∑ u ν ′ ν ′′ c ^ ν ′ † c ^ ν ′′ ⟹ [ H ^ 0 , c ^ ν ] = − ν ′′ ∑ u ν ν ′′ c ^ ν ′′
Proof
Proof.
Using the commutator identity for [ A B , C ] \comm{A B}{C} [ A B , C ] ,
we decompose it like so:
[ H ^ 0 , c ^ ν ] = ∑ ν ′ ν ′ ′ u ν ν ′ ′ [ c ^ ν ′ † c ^ ν ′ ′ , c ^ ν ] = ∑ ν ′ ν ′ ′ u ν ′ ν ′ ′ ( c ^ ν ′ † [ c ^ ν ′ ′ , c ^ ν ] + [ c ^ ν ′ † , c ^ ν ] c ^ ν ′ ′ ) \begin{aligned}
\comm{\hat{H}_0}{\hat{c}_\nu}
&= \sum_{\nu' \nu''} u_{\nu \nu''} \comm{\hat{c}_{\nu'}^\dagger \hat{c}_{\nu''}}{\hat{c}_\nu}
= \sum_{\nu' \nu''} u_{\nu' \nu''} \Big( \hat{c}_{\nu'}^\dagger \comm{\hat{c}_{\nu''}}{\hat{c}_\nu}
+ \comm{\hat{c}_{\nu'}^\dagger}{\hat{c}_\nu} \hat{c}_{\nu''} \Big)
\end{aligned} [ H ^ 0 , c ^ ν ] = ν ′ ν ′′ ∑ u ν ν ′′ [ c ^ ν ′ † c ^ ν ′′ , c ^ ν ] = ν ′ ν ′′ ∑ u ν ′ ν ′′ ( c ^ ν ′ † [ c ^ ν ′′ , c ^ ν ] + [ c ^ ν ′ † , c ^ ν ] c ^ ν ′′ )
Bosons have well-known commutation relations,
so the result follows directly:
[ H ^ 0 , b ^ ν ] = ∑ ν ′ ν ′ ′ u ν ′ ν ′ ′ ( b ^ ν ′ † [ b ^ ν ′ ′ , b ^ ν ] + [ b ^ ν ′ † , b ^ ν ] b ^ ν ′ ′ ) = − ∑ ν ′ ′ u ν ν ′ ′ b ^ ν ′ ′ \begin{aligned}
\comm{\hat{H}_0}{\hat{b}_\nu}
&= \sum_{\nu' \nu''} u_{\nu' \nu''} \Big( \hat{b}_{\nu'}^\dagger \comm{\hat{b}_{\nu''}}{\hat{b}_\nu}
+ \comm{\hat{b}_{\nu'}^\dagger}{\hat{b}_\nu} \hat{b}_{\nu''} \Big)
= - \sum_{\nu''} u_{\nu \nu''} \hat{b}_{\nu''}
\end{aligned} [ H ^ 0 , b ^ ν ] = ν ′ ν ′′ ∑ u ν ′ ν ′′ ( b ^ ν ′ † [ b ^ ν ′′ , b ^ ν ] + [ b ^ ν ′ † , b ^ ν ] b ^ ν ′′ ) = − ν ′′ ∑ u ν ν ′′ b ^ ν ′′
Fermions only have anticommutation relations,
so a bit more work is necessary:
[ H ^ 0 , f ^ ν ] = ∑ ν ′ ν ′ ′ u ν ′ ν ′ ′ ( f ^ ν ′ † [ f ^ ν ′ ′ , f ^ ν ] + [ f ^ ν ′ † , f ^ ν ] f ^ ν ′ ′ ) = ∑ ν ′ ν ′ ′ u ν ′ ν ′ ′ ( f ^ ν ′ † { f ^ ν ′ ′ , f ^ ν } − 2 f ^ ν ′ † f ^ ν f ^ ν ′ ′ + { f ^ ν ′ † , f ^ ν } f ^ ν ′ ′ − 2 f ^ ν f ^ ν ′ † f ^ ν ′ ′ ) = ∑ ν ′ ν ′ ′ u ν ′ ν ′ ′ ( δ ν ν ′ f ^ ν ′ ′ − 2 { f ^ ν ′ † , f ^ ν } f ^ ν ′ ′ ) = − ∑ ν ′ ′ u ν ν ′ ′ f ^ ν ′ ′ \begin{aligned}
\comm{\hat{H}_0}{\hat{f}_{\!\nu}}
&= \sum_{\nu' \nu''} u_{\nu' \nu''} \Big( \hat{f}_{\!\nu'}^\dagger \comm{\hat{f}_{\!\nu''}}{\hat{f}_{\!\nu}}
+ \comm{\hat{f}_{\!\nu'}^\dagger}{\hat{f}_{\!\nu}} \hat{f}_{\!\nu''} \Big)
\\
&= \sum_{\nu' \nu''} u_{\nu' \nu''} \Big( \hat{f}_{\!\nu'}^\dagger \acomm{\hat{f}_{\!\nu''}}{\hat{f}_{\!\nu}}
- 2 \hat{f}_{\!\nu'}^\dagger \hat{f}_{\!\nu} \hat{f}_{\!\nu''}
+ \acomm{\hat{f}_{\!\nu'}^\dagger}{\hat{f}_{\!\nu}} \hat{f}_{\!\nu''}
- 2 \hat{f}_{\!\nu} \hat{f}_{\!\nu'}^\dagger \hat{f}_{\!\nu''} \Big)
\\
&= \sum_{\nu' \nu''} u_{\nu' \nu''} \Big( \delta_{\nu \nu'} \hat{f}_{\!\nu''}
- 2 \acomm{\hat{f}_{\!\nu'}^\dagger}{\hat{f}_{\!\nu}} \hat{f}_{\!\nu''} \Big)
= - \sum_{\nu''} u_{\nu \nu''} \hat{f}_{\!\nu''}
\end{aligned} [ H ^ 0 , f ^ ν ] = ν ′ ν ′′ ∑ u ν ′ ν ′′ ( f ^ ν ′ † [ f ^ ν ′′ , f ^ ν ] + [ f ^ ν ′ † , f ^ ν ] f ^ ν ′′ ) = ν ′ ν ′′ ∑ u ν ′ ν ′′ ( f ^ ν ′ † { f ^ ν ′′ , f ^ ν } − 2 f ^ ν ′ † f ^ ν f ^ ν ′′ + { f ^ ν ′ † , f ^ ν } f ^ ν ′′ − 2 f ^ ν f ^ ν ′ † f ^ ν ′′ ) = ν ′ ν ′′ ∑ u ν ′ ν ′′ ( δ ν ν ′ f ^ ν ′′ − 2 { f ^ ν ′ † , f ^ ν } f ^ ν ′′ ) = − ν ′′ ∑ u ν ν ′′ f ^ ν ′′
Substituting this into G ν ν ′ R G_{\nu \nu'}^R G ν ν ′ R ’s equation of motion,
we recognize another Green’s function G ν ′ ′ ν ′ R G_{\nu'' \nu'}^R G ν ′′ ν ′ R :
i ℏ ∂ G ν ν ′ R ∂ t = δ ν ν ′ δ ( t − t ′ ) + i ℏ Θ ( t − t ′ ) ( ⟨ [ [ H ^ i n t , c ^ ν ] , c ^ ν ′ † ] ∓ ⟩ − ∑ ν ′ ′ u ν ν ′ ′ ⟨ [ c ^ ν ′ ′ , c ^ ν ′ † ] ∓ ⟩ ) = δ ν ν ′ δ ( t − t ′ ) + i ℏ Θ ( t − t ′ ) ⟨ [ [ H ^ i n t , c ^ ν ] , c ^ ν ′ † ] ∓ ⟩ + ∑ ν ′ ′ u ν ν ′ ′ G ν ′ ′ ν ′ R ( t , t ′ ) \begin{aligned}
i \hbar \pdv{G^R_{\nu \nu'}}{t}
&= \delta_{\nu \nu'} \delta(t \!-\! t') + \frac{i}{\hbar} \Theta(t \!-\! t')
\bigg( \Expval{\comm{\comm{\hat{H}_\mathrm{int}}{\hat{c}_\nu}}{\hat{c}_{\nu'}^\dagger}_{\mp}}
- \sum_{\nu''} u_{\nu \nu''} \Expval{\comm{\hat{c}_{\nu''}}{\hat{c}_{\nu'}^\dagger}_{\mp}} \bigg)
\\
&= \delta_{\nu \nu'} \delta(t \!-\! t')
+ \frac{i}{\hbar} \Theta(t \!-\! t') \Expval{\comm{\comm{\hat{H}_\mathrm{int}}{\hat{c}_\nu}}{\hat{c}_{\nu'}^\dagger}_{\mp}}
+ \sum_{\nu''} u_{\nu \nu''} G_{\nu''\nu'}^R(t, t')
\end{aligned} i ℏ ∂ t ∂ G ν ν ′ R = δ ν ν ′ δ ( t − t ′ ) + ℏ i Θ ( t − t ′ ) ( ⟨ [ [ H ^ int , c ^ ν ] , c ^ ν ′ † ] ∓ ⟩ − ν ′′ ∑ u ν ν ′′ ⟨ [ c ^ ν ′′ , c ^ ν ′ † ] ∓ ⟩ ) = δ ν ν ′ δ ( t − t ′ ) + ℏ i Θ ( t − t ′ ) ⟨ [ [ H ^ int , c ^ ν ] , c ^ ν ′ † ] ∓ ⟩ + ν ′′ ∑ u ν ν ′′ G ν ′′ ν ′ R ( t , t ′ )
Rearranging this as follows yields the main result
of equation-of-motion theory:
∑ ν ′ ′ ( i ℏ δ ν ν ′ ′ ∂ ∂ t − u ν ν ′ ′ ) G ν ′ ′ ν ′ R ( t , t ′ ) = δ ν ν ′ δ ( t − t ′ ) + D ν ν ′ R ( t , t ′ ) \begin{aligned}
\boxed{
\sum_{\nu''} \Big( i \hbar \delta_{\nu \nu''} \pdv{}{t} - u_{\nu \nu''} \Big) G^R_{\nu'' \nu'}(t, t')
= \delta_{\nu \nu'} \delta(t \!-\! t') + D_{\nu \nu'}^R(t, t')
}
\end{aligned} ν ′′ ∑ ( i ℏ δ ν ν ′′ ∂ t ∂ − u ν ν ′′ ) G ν ′′ ν ′ R ( t , t ′ ) = δ ν ν ′ δ ( t − t ′ ) + D ν ν ′ R ( t , t ′ )
Where D ν ν ′ R D_{\nu \nu'}^R D ν ν ′ R represents a correction due to interactions H ^ i n t \hat{H}_\mathrm{int} H ^ int ,
and also has the form of a retarded Green’s function,
but with c ^ ν \hat{c}_{\nu} c ^ ν replaced by [ − H ^ i n t , c ^ ν ] \comm{-\hat{H}_\mathrm{int}}{\hat{c}_\nu} [ − H ^ int , c ^ ν ] :
D ν ′ ′ ν ′ R ( t , t ′ ) ≡ − i ℏ Θ ( t − t ′ ) ⟨ [ [ − H ^ i n t ( t ) , c ^ ν ( t ) ] , c ^ ν ′ † ( t ′ ) ] ∓ ⟩ \begin{aligned}
\boxed{
D^R_{\nu'' \nu'}(t, t')
\equiv - \frac{i}{\hbar} \Theta(t \!-\! t') \Expval{\comm{\comm{-\hat{H}_\mathrm{int}(t)}{\hat{c}_\nu(t)}}{\hat{c}_{\nu'}^\dagger(t')}_{\mp}}
}
\end{aligned} D ν ′′ ν ′ R ( t , t ′ ) ≡ − ℏ i Θ ( t − t ′ ) ⟨ [ [ − H ^ int ( t ) , c ^ ν ( t ) ] , c ^ ν ′ † ( t ′ ) ] ∓ ⟩
Unfortunately, calculating D ν ν ′ R D_{\nu \nu'}^R D ν ν ′ R
might still not be doable due to H ^ i n t \hat{H}_\mathrm{int} H ^ int .
The key idea of equation-of-motion theory is to either approximate D ν ν ′ R D_{\nu \nu'}^R D ν ν ′ R now,
or to differentiate it again i ℏ d D ν ν ′ R / d t i \hbar \idv{D_{\nu \nu'}^R}{t} i ℏ d D ν ν ′ R / d t ,
and try again for the resulting corrections,
until a solvable equation is found.
There is no guarantee that that will ever happen;
if not, one of the corrections needs to be approximated.
For non-interacting particles H ^ i n t = 0 \hat{H}_\mathrm{int} = 0 H ^ int = 0 ,
so clearly D ν ν ′ R D_{\nu \nu'}^R D ν ν ′ R trivially vanishes then.
Let us assume that H ^ 0 \hat{H}_0 H ^ 0 is also time-independent,
such that G ν ′ ′ ν ′ R G_{\nu'' \nu'}^R G ν ′′ ν ′ R only depends on the difference t − t ′ t - t' t − t ′ :
∑ ν ′ ′ ( i ℏ δ ν ν ′ ′ ∂ ∂ t − u ν ν ′ ′ ) G ν ′ ′ ν ′ R ( t − t ′ ) = δ ν ν ′ δ ( t − t ′ ) \begin{aligned}
\sum_{\nu''} \Big( i \hbar \delta_{\nu \nu''} \pdv{}{t} - u_{\nu \nu''} \Big) G^R_{\nu'' \nu'}(t - t')
= \delta_{\nu \nu'} \delta(t - t')
\end{aligned} ν ′′ ∑ ( i ℏ δ ν ν ′′ ∂ t ∂ − u ν ν ′′ ) G ν ′′ ν ′ R ( t − t ′ ) = δ ν ν ′ δ ( t − t ′ )
We take the Fourier transform
( t − t ′ ) → ( ω + i η ) (t \!-\! t') \to (\omega + i \eta) ( t − t ′ ) → ( ω + i η ) , where η → 0 + \eta \to 0^+ η → 0 + ensures convergence:
∑ ν ′ ′ ( ℏ δ ν ν ′ ′ ( ω + i η ) − u ν ν ′ ′ ) G ν ′ ′ ν ′ R ( ω ) = δ ν ν ′ \begin{aligned}
\sum_{\nu''} \Big( \hbar \delta_{\nu \nu''} (\omega + i \eta) - u_{\nu \nu''} \Big) G^R_{\nu'' \nu'}(\omega)
= \delta_{\nu \nu'}
\end{aligned} ν ′′ ∑ ( ℏ δ ν ν ′′ ( ω + i η ) − u ν ν ′′ ) G ν ′′ ν ′ R ( ω ) = δ ν ν ′
If we assume a diagonal basis u ν ν ′ ′ = ε ν δ ν ν ′ ′ u_{\nu \nu''} = \varepsilon_\nu \delta_{\nu \nu''} u ν ν ′′ = ε ν δ ν ν ′′ ,
this reduces to the following:
δ ν ν ′ = ∑ ν ′ ′ ( ℏ δ ν ν ′ ′ ( ω + i η ) − ε ν δ ν ν ′ ′ ) G ν ′ ′ ν ′ R ( ω ) = ( ℏ ( ω + i η ) − ε ν ) G ν ν ′ R ( ω ) \begin{aligned}
\delta_{\nu \nu'}
&= \sum_{\nu''} \Big( \hbar \delta_{\nu \nu''} (\omega + i \eta) - \varepsilon_\nu \delta_{\nu \nu''} \Big) G^R_{\nu'' \nu'}(\omega)
\\
&= \Big( \hbar (\omega + i \eta) - \varepsilon_\nu \Big) G^R_{\nu \nu'}(\omega)
\end{aligned} δ ν ν ′ = ν ′′ ∑ ( ℏ δ ν ν ′′ ( ω + i η ) − ε ν δ ν ν ′′ ) G ν ′′ ν ′ R ( ω ) = ( ℏ ( ω + i η ) − ε ν ) G ν ν ′ R ( ω )
For a non-interacting, time-independent Hamiltonian,
we therefore arrive at:
G ν ν ′ R ( ω ) = δ ν ν ′ ℏ ( ω + i η ) − ε ν \begin{aligned}
\boxed{
G^R_{\nu \nu'}(\omega)
= \frac{\delta_{\nu \nu'}}{\hbar (\omega + i \eta) - \varepsilon_\nu}
}
\end{aligned} G ν ν ′ R ( ω ) = ℏ ( ω + i η ) − ε ν δ ν ν ′
References
H. Bruus, K. Flensberg,
Many-body quantum theory in condensed matter physics ,
2016, Oxford.