Categories:
Mathematics .
Grönwall-Bellman inequality 
Suppose we have a first-order ordinary differential equation for some function u ( t ) u(t) u ( t ) u ′ ( t ) u'(t) u ′ ( t ) 
u ′ ( t ) ≤ β ( t )   u ( t ) \begin{aligned}
    u'(t)
    \le \beta(t) \: u(t)
\end{aligned} u ′ ( t ) ≤ β ( t ) u ( t )  Where β ( t ) \beta(t) β ( t ) Grönwall’s inequality  states that the solution u ( t ) u(t) u ( t ) 
u ( t ) ≤ u ( 0 ) exp    ( ∫ 0 t β ( s ) d s ) \begin{aligned}
    \boxed{
        u(t)
        \le u(0) \exp\!\bigg( \int_0^t \beta(s) \dd{s} \bigg)
    }
\end{aligned} u ( t ) ≤ u ( 0 ) exp ( ∫ 0 t  β ( s ) d s )   
Proof 
    
    Proof. 
We define w ( t ) w(t) w ( t ) w ′ ( t ) w'(t) w ′ ( t ) w ( t ) w(t) w ( t ) 
    w ( t ) ≡ u ( 0 ) exp    ( ∫ 0 t β ( s ) d s )    ⟹    w ′ ( t ) = β ( t )   w ( t ) \begin{aligned}
    w(t)
    \equiv u(0) \exp\!\bigg( \int_0^t \beta(s) \dd{s} \bigg)
    \quad \implies \quad
    w'(t)
    = \beta(t) \: w(t)
\end{aligned} w ( t ) ≡ u ( 0 ) exp ( ∫ 0 t  β ( s ) d s ) ⟹ w ′ ( t ) = β ( t ) w ( t )  Where w ( 0 ) = u ( 0 ) w(0) = u(0) w ( 0 ) = u ( 0 ) t t t 
    u ( t ) w ( t ) ≤ 1 \begin{aligned}
    \frac{u(t)}{w(t)} \le 1
\end{aligned} w ( t ) u ( t )  ≤ 1  For t = 0 t = 0 t = 0 w ( 0 ) = u ( 0 ) w(0) = u(0) w ( 0 ) = u ( 0 ) t > 0 t > 0 t > 0 w ( t ) w(t) w ( t ) u ( t ) u(t) u ( t ) 
    d d t ( u w ) = u ′ w − u w ′ w 2 = u ′ w − u β w w 2 = u ′ − u β w \begin{aligned}
    \dv{}{t}\bigg( \frac{u}{w} \bigg)
    = \frac{u' w - u  w'}{w^2}
    = \frac{u' w - u \beta w}{w^2}
    = \frac{u' - u \beta}{w}
\end{aligned} d t d  ( w u  ) = w 2 u ′ w − u w ′  = w 2 u ′ w − u βw  = w u ′ − u β   Since u ′ ≤ β u u' \le \beta u u ′ ≤ β u 
   
 
Grönwall’s inequality can be generalized to non-differentiable functions.
Suppose we know:
u ( t ) ≤ α ( t ) + ∫ 0 t β ( s )   u ( s ) d s \begin{aligned}
    u(t)
    \le \alpha(t) + \int_0^t \beta(s) \: u(s) \dd{s}
\end{aligned} u ( t ) ≤ α ( t ) + ∫ 0 t  β ( s ) u ( s ) d s  Where α ( t ) \alpha(t) α ( t ) β ( t ) \beta(t) β ( t ) Grönwall-Bellman inequality  states that:
u ( t ) ≤ α ( t ) + ∫ 0 t α ( s )   β ( s ) exp    ( ∫ s t β ( r ) d r ) d s \begin{aligned}
    \boxed{
        u(t)
        \le \alpha(t) + \int_0^t \alpha(s) \: \beta(s) \exp\!\bigg( \int_s^t \beta(r) \dd{r} \bigg) \dd{s}
    }
\end{aligned} u ( t ) ≤ α ( t ) + ∫ 0 t  α ( s ) β ( s ) exp ( ∫ s t  β ( r ) d r ) d s   
Proof 
    
    Proof. 
We start by defining w ( t ) w(t) w ( t ) 
    w ( t ) ≡ exp    (   −     ∫ 0 t β ( s ) d s ) ( ∫ 0 t β ( s )   u ( s ) d s ) \begin{aligned}
    w(t)
    \equiv \exp\!\bigg( \!-\!\! \int_0^t \beta(s) \dd{s} \bigg) \bigg( \int_0^t \beta(s) \: u(s) \dd{s} \bigg)
\end{aligned} w ( t ) ≡ exp ( − ∫ 0 t  β ( s ) d s ) ( ∫ 0 t  β ( s ) u ( s ) d s )  Its derivative w ′ ( t ) w'(t) w ′ ( t ) 
    w ′ ( t ) = ( d d t ∫ 0 t β ( s )   u ( s ) d s − β ( t ) ∫ 0 t β ( s )   u ( s ) d s ) exp    (   −     ∫ 0 t β ( s ) d s ) = β ( t ) ( u ( t ) − ∫ 0 t β ( s )   u ( s ) d s ) exp    (   −     ∫ 0 t β ( s ) d s ) \begin{aligned}
    w'(t)
    &= \bigg( \dv{}{t} \int_0^t \beta(s) \: u(s) \dd{s} - \beta(t)\int_0^t \beta(s) \: u(s) \dd{s} \bigg) 
    \exp\!\bigg( \!-\!\! \int_0^t \beta(s) \dd{s} \bigg)
    \\
    &= \beta(t) \bigg( u(t) - \int_0^t \beta(s) \: u(s) \dd{s} \bigg)
    \exp\!\bigg( \!-\!\! \int_0^t \beta(s) \dd{s} \bigg)
\end{aligned} w ′ ( t )  = ( d t d  ∫ 0 t  β ( s ) u ( s ) d s − β ( t ) ∫ 0 t  β ( s ) u ( s ) d s ) exp ( − ∫ 0 t  β ( s ) d s ) = β ( t ) ( u ( t ) − ∫ 0 t  β ( s ) u ( s ) d s ) exp ( − ∫ 0 t  β ( s ) d s )  The parenthesized expression is bounded from above by α ( t ) \alpha(t) α ( t ) u ( t ) u(t) u ( t ) 
    w ′ ( t ) ≤ α ( t )   β ( t ) exp    (   −     ∫ 0 t β ( s ) d s ) \begin{aligned}
    w'(t)
    \le \alpha(t) \: \beta(t) \exp\!\bigg( \!-\!\! \int_0^t \beta(s) \dd{s} \bigg)
\end{aligned} w ′ ( t ) ≤ α ( t ) β ( t ) exp ( − ∫ 0 t  β ( s ) d s )  Integrating this to find w ( t ) w(t) w ( t ) 
    w ( t ) ≤ ∫ 0 t α ( s )   β ( s ) exp    (   −     ∫ 0 s β ( r ) d r ) d s \begin{aligned}
    w(t)
    \le \int_0^t \alpha(s) \: \beta(s) \exp\!\bigg( \!-\!\! \int_0^s \beta(r) \dd{r} \bigg) \dd{s}
\end{aligned} w ( t ) ≤ ∫ 0 t  α ( s ) β ( s ) exp ( − ∫ 0 s  β ( r ) d r ) d s  In the initial definition of w ( t ) w(t) w ( t ) w ( t ) w(t) w ( t ) 
    ∫ 0 t β ( s )   u ( s ) d s = w ( t ) exp    ( ∫ 0 t β ( s ) d s ) ≤ ∫ 0 t α ( s )   β ( s ) exp    ( ∫ 0 t β ( r ) d r ) exp    (   −     ∫ 0 s β ( r ) d r ) d s ≤ ∫ 0 t α ( s )   β ( s ) exp    ( ∫ s t β ( r ) d r ) \begin{aligned}
    \int_0^t \beta(s) \: u(s) \dd{s}
    &= w(t) \exp\!\bigg( \int_0^t \beta(s) \dd{s} \bigg)
    \\
    &\le \int_0^t \alpha(s) \: \beta(s) \exp\!\bigg( \int_0^t \beta(r) \dd{r} \bigg) \exp\!\bigg( \!-\!\! \int_0^s \beta(r) \dd{r} \bigg) \dd{s}
    \\
    &\le \int_0^t \alpha(s) \: \beta(s) \exp\!\bigg( \int_s^t \beta(r) \dd{r} \bigg)
\end{aligned} ∫ 0 t  β ( s ) u ( s ) d s  = w ( t ) exp ( ∫ 0 t  β ( s ) d s ) ≤ ∫ 0 t  α ( s ) β ( s ) exp ( ∫ 0 t  β ( r ) d r ) exp ( − ∫ 0 s  β ( r ) d r ) d s ≤ ∫ 0 t  α ( s ) β ( s ) exp ( ∫ s t  β ( r ) d r )  This yields the desired result after inserting it
into the condition under which the Grönwall-Bellman inequality holds.
   
 
In the special case where α ( t ) \alpha(t) α ( t ) t t t 
u ( t ) ≤ α ( t ) exp    ( ∫ 0 t β ( s ) d s ) \begin{aligned}
    \boxed{
        u(t)
        \le \alpha(t) \exp\!\bigg( \int_0^t \beta(s) \dd{s} \bigg)
    }
\end{aligned} u ( t ) ≤ α ( t ) exp ( ∫ 0 t  β ( s ) d s )   
Proof 
    
    Proof. 
Starting from the “ordinary” Grönwall-Bellman inequality,
the fact that α ( t ) \alpha(t) α ( t ) α ( s ) ≤ α ( t ) \alpha(s) \le \alpha(t) α ( s ) ≤ α ( t ) s ≤ t s \le t s ≤ t 
    u ( t ) ≤ α ( t ) + ∫ 0 t α ( s )   β ( s ) exp    ( ∫ s t β ( r ) d r ) d s ≤ α ( t ) + α ( t ) ∫ 0 t β ( s ) exp    ( ∫ s t β ( r ) d r ) d s \begin{aligned}
    u(t)
    &\le \alpha(t) + \int_0^t \alpha(s) \: \beta(s) \exp\!\bigg( \int_s^t \beta(r) \dd{r} \bigg) \dd{s}
    \\
    &\le \alpha(t) + \alpha(t) \int_0^t \beta(s) \exp\!\bigg( \int_s^t \beta(r) \dd{r} \bigg) \dd{s}
\end{aligned} u ( t )  ≤ α ( t ) + ∫ 0 t  α ( s ) β ( s ) exp ( ∫ s t  β ( r ) d r ) d s ≤ α ( t ) + α ( t ) ∫ 0 t  β ( s ) exp ( ∫ s t  β ( r ) d r ) d s  Now, consider the following straightforward identity, involving the exponential:
    d d s exp    ( ∫ s t β ( r ) d r ) = − β ( s ) exp    ( ∫ s t β ( r ) d r ) \begin{aligned}
    \dv{}{s}\exp\!\bigg( \int_s^t \beta(r) \dd{r} \bigg)
    &= - \beta(s) \exp\!\bigg( \int_s^t \beta(r) \dd{r} \bigg)
\end{aligned} d s d  exp ( ∫ s t  β ( r ) d r )  = − β ( s ) exp ( ∫ s t  β ( r ) d r )  By inserting this into normal Grönwall-Bellman inequality, we arrive at:
    u ( t ) ≤ α ( t ) − α ( t ) ∫ 0 t d d s exp    ( ∫ s t β ( r ) d r ) d s ≤ α ( t ) − α ( t ) [ ∫ d d s exp    ( ∫ s t β ( r ) d r ) d s ] s = 0 s = t \begin{aligned}
    u(t)
    &\le \alpha(t) - \alpha(t) \int_0^t \dv{}{s}\exp\!\bigg( \int_s^t \beta(r) \dd{r} \bigg) \dd{s}
    \\
    &\le \alpha(t) - \alpha(t) \bigg[ \int \dv{}{s}\exp\!\bigg( \int_s^t \beta(r) \dd{r} \bigg) \dd{s} \bigg]_{s = 0}^{s = t}
\end{aligned} u ( t )  ≤ α ( t ) − α ( t ) ∫ 0 t  d s d  exp ( ∫ s t  β ( r ) d r ) d s ≤ α ( t ) − α ( t ) [ ∫ d s d  exp ( ∫ s t  β ( r ) d r ) d s ] s = 0 s = t   Where we have converted the outer integral from definite to indefinite.
Continuing:
    u ( t ) ≤ α ( t ) − α ( t ) [ exp    ( ∫ s t β ( r ) d r ) ] s = 0 s = t ≤ α ( t ) − α ( t ) exp    ( ∫ t t β ( r ) d r ) + α ( t ) exp    ( ∫ 0 t β ( r ) d r ) ≤ α ( t ) − α ( t ) + α ( t ) exp    ( ∫ 0 t β ( r ) d r ) \begin{aligned}
    u(t)
    &\le \alpha(t) - \alpha(t) \bigg[ \exp\!\bigg( \int_s^t \beta(r) \dd{r} \bigg) \bigg]_{s = 0}^{s = t}
    \\
    &\le \alpha(t) - \alpha(t) \exp\!\bigg( \int_t^t \beta(r) \dd{r} \bigg) + \alpha(t) \exp\!\bigg( \int_0^t \beta(r) \dd{r} \bigg)
    \\
    &\le \alpha(t) - \alpha(t) + \alpha(t) \exp\!\bigg( \int_0^t \beta(r) \dd{r} \bigg)
\end{aligned} u ( t )  ≤ α ( t ) − α ( t ) [ exp ( ∫ s t  β ( r ) d r ) ] s = 0 s = t  ≤ α ( t ) − α ( t ) exp ( ∫ t t  β ( r ) d r ) + α ( t ) exp ( ∫ 0 t  β ( r ) d r ) ≤ α ( t ) − α ( t ) + α ( t ) exp ( ∫ 0 t  β ( r ) d r )   
 
References 
  U.H. Thygesen,
Lecture notes on diffusions and stochastic differential equations ,
2021, Polyteknisk Kompendie.