Categories:
Mathematics .
Grönwall-Bellman inequality
Suppose we have a first-order ordinary differential equation for some function u ( t ) u(t) u ( t ) ,
and assume that we can prove from this equation
that the derivative u ′ ( t ) u'(t) u ′ ( t ) is bounded as follows:
u ′ ( t ) ≤ β ( t ) u ( t ) \begin{aligned}
u'(t)
\le \beta(t) \: u(t)
\end{aligned} u ′ ( t ) ≤ β ( t ) u ( t )
Where β ( t ) \beta(t) β ( t ) is known.
Then Grönwall’s inequality states that the solution u ( t ) u(t) u ( t ) is bounded:
u ( t ) ≤ u ( 0 ) exp ( ∫ 0 t β ( s ) d s ) \begin{aligned}
\boxed{
u(t)
\le u(0) \exp\!\bigg( \int_0^t \beta(s) \dd{s} \bigg)
}
\end{aligned} u ( t ) ≤ u ( 0 ) exp ( ∫ 0 t β ( s ) d s )
Proof
Proof.
We define w ( t ) w(t) w ( t ) as equal to the upper bounds above
on both w ′ ( t ) w'(t) w ′ ( t ) and w ( t ) w(t) w ( t ) itself:
w ( t ) ≡ u ( 0 ) exp ( ∫ 0 t β ( s ) d s ) ⟹ w ′ ( t ) = β ( t ) w ( t ) \begin{aligned}
w(t)
\equiv u(0) \exp\!\bigg( \int_0^t \beta(s) \dd{s} \bigg)
\quad \implies \quad
w'(t)
= \beta(t) \: w(t)
\end{aligned} w ( t ) ≡ u ( 0 ) exp ( ∫ 0 t β ( s ) d s ) ⟹ w ′ ( t ) = β ( t ) w ( t )
Where w ( 0 ) = u ( 0 ) w(0) = u(0) w ( 0 ) = u ( 0 ) .
Then the goal is to show the following for all t t t :
u ( t ) w ( t ) ≤ 1 \begin{aligned}
\frac{u(t)}{w(t)} \le 1
\end{aligned} w ( t ) u ( t ) ≤ 1
For t = 0 t = 0 t = 0 , this is trivial, since w ( 0 ) = u ( 0 ) w(0) = u(0) w ( 0 ) = u ( 0 ) by definition.
For t > 0 t > 0 t > 0 , we want w ( t ) w(t) w ( t ) to grow at least as fast as u ( t ) u(t) u ( t )
in order to satisfy the inequality.
We thus calculate:
d d t ( u w ) = u ′ w − u w ′ w 2 = u ′ w − u β w w 2 = u ′ − u β w \begin{aligned}
\dv{}{t}\bigg( \frac{u}{w} \bigg)
= \frac{u' w - u w'}{w^2}
= \frac{u' w - u \beta w}{w^2}
= \frac{u' - u \beta}{w}
\end{aligned} d t d ( w u ) = w 2 u ′ w − u w ′ = w 2 u ′ w − u βw = w u ′ − u β
Since u ′ ≤ β u u' \le \beta u u ′ ≤ β u as a condition,
the above derivative is always negative.
Grönwall’s inequality can be generalized to non-differentiable functions.
Suppose we know:
u ( t ) ≤ α ( t ) + ∫ 0 t β ( s ) u ( s ) d s \begin{aligned}
u(t)
\le \alpha(t) + \int_0^t \beta(s) \: u(s) \dd{s}
\end{aligned} u ( t ) ≤ α ( t ) + ∫ 0 t β ( s ) u ( s ) d s
Where α ( t ) \alpha(t) α ( t ) and β ( t ) \beta(t) β ( t ) are known.
Then the Grönwall-Bellman inequality states that:
u ( t ) ≤ α ( t ) + ∫ 0 t α ( s ) β ( s ) exp ( ∫ s t β ( r ) d r ) d s \begin{aligned}
\boxed{
u(t)
\le \alpha(t) + \int_0^t \alpha(s) \: \beta(s) \exp\!\bigg( \int_s^t \beta(r) \dd{r} \bigg) \dd{s}
}
\end{aligned} u ( t ) ≤ α ( t ) + ∫ 0 t α ( s ) β ( s ) exp ( ∫ s t β ( r ) d r ) d s
Proof
Proof.
We start by defining w ( t ) w(t) w ( t ) as follows,
which will act as shorthand:
w ( t ) ≡ exp ( − ∫ 0 t β ( s ) d s ) ( ∫ 0 t β ( s ) u ( s ) d s ) \begin{aligned}
w(t)
\equiv \exp\!\bigg( \!-\!\! \int_0^t \beta(s) \dd{s} \bigg) \bigg( \int_0^t \beta(s) \: u(s) \dd{s} \bigg)
\end{aligned} w ( t ) ≡ exp ( − ∫ 0 t β ( s ) d s ) ( ∫ 0 t β ( s ) u ( s ) d s )
Its derivative w ′ ( t ) w'(t) w ′ ( t ) is then straightforwardly calculated to be given by:
w ′ ( t ) = ( d d t ∫ 0 t β ( s ) u ( s ) d s − β ( t ) ∫ 0 t β ( s ) u ( s ) d s ) exp ( − ∫ 0 t β ( s ) d s ) = β ( t ) ( u ( t ) − ∫ 0 t β ( s ) u ( s ) d s ) exp ( − ∫ 0 t β ( s ) d s ) \begin{aligned}
w'(t)
&= \bigg( \dv{}{t} \int_0^t \beta(s) \: u(s) \dd{s} - \beta(t)\int_0^t \beta(s) \: u(s) \dd{s} \bigg)
\exp\!\bigg( \!-\!\! \int_0^t \beta(s) \dd{s} \bigg)
\\
&= \beta(t) \bigg( u(t) - \int_0^t \beta(s) \: u(s) \dd{s} \bigg)
\exp\!\bigg( \!-\!\! \int_0^t \beta(s) \dd{s} \bigg)
\end{aligned} w ′ ( t ) = ( d t d ∫ 0 t β ( s ) u ( s ) d s − β ( t ) ∫ 0 t β ( s ) u ( s ) d s ) exp ( − ∫ 0 t β ( s ) d s ) = β ( t ) ( u ( t ) − ∫ 0 t β ( s ) u ( s ) d s ) exp ( − ∫ 0 t β ( s ) d s )
The parenthesized expression is bounded from above by α ( t ) \alpha(t) α ( t ) ,
thanks to the condition that u ( t ) u(t) u ( t ) is assumed to satisfy,
for the Grönwall-Bellman inequality to be true:
w ′ ( t ) ≤ α ( t ) β ( t ) exp ( − ∫ 0 t β ( s ) d s ) \begin{aligned}
w'(t)
\le \alpha(t) \: \beta(t) \exp\!\bigg( \!-\!\! \int_0^t \beta(s) \dd{s} \bigg)
\end{aligned} w ′ ( t ) ≤ α ( t ) β ( t ) exp ( − ∫ 0 t β ( s ) d s )
Integrating this to find w ( t ) w(t) w ( t ) yields the following result:
w ( t ) ≤ ∫ 0 t α ( s ) β ( s ) exp ( − ∫ 0 s β ( r ) d r ) d s \begin{aligned}
w(t)
\le \int_0^t \alpha(s) \: \beta(s) \exp\!\bigg( \!-\!\! \int_0^s \beta(r) \dd{r} \bigg) \dd{s}
\end{aligned} w ( t ) ≤ ∫ 0 t α ( s ) β ( s ) exp ( − ∫ 0 s β ( r ) d r ) d s
In the initial definition of w ( t ) w(t) w ( t ) ,
we now move the exponential to the other side,
and rewrite it using the above inequality for w ( t ) w(t) w ( t ) :
∫ 0 t β ( s ) u ( s ) d s = w ( t ) exp ( ∫ 0 t β ( s ) d s ) ≤ ∫ 0 t α ( s ) β ( s ) exp ( ∫ 0 t β ( r ) d r ) exp ( − ∫ 0 s β ( r ) d r ) d s ≤ ∫ 0 t α ( s ) β ( s ) exp ( ∫ s t β ( r ) d r ) \begin{aligned}
\int_0^t \beta(s) \: u(s) \dd{s}
&= w(t) \exp\!\bigg( \int_0^t \beta(s) \dd{s} \bigg)
\\
&\le \int_0^t \alpha(s) \: \beta(s) \exp\!\bigg( \int_0^t \beta(r) \dd{r} \bigg) \exp\!\bigg( \!-\!\! \int_0^s \beta(r) \dd{r} \bigg) \dd{s}
\\
&\le \int_0^t \alpha(s) \: \beta(s) \exp\!\bigg( \int_s^t \beta(r) \dd{r} \bigg)
\end{aligned} ∫ 0 t β ( s ) u ( s ) d s = w ( t ) exp ( ∫ 0 t β ( s ) d s ) ≤ ∫ 0 t α ( s ) β ( s ) exp ( ∫ 0 t β ( r ) d r ) exp ( − ∫ 0 s β ( r ) d r ) d s ≤ ∫ 0 t α ( s ) β ( s ) exp ( ∫ s t β ( r ) d r )
This yields the desired result after inserting it
into the condition under which the Grönwall-Bellman inequality holds.
In the special case where α ( t ) \alpha(t) α ( t ) is non-decreasing with t t t ,
the inequality reduces to:
u ( t ) ≤ α ( t ) exp ( ∫ 0 t β ( s ) d s ) \begin{aligned}
\boxed{
u(t)
\le \alpha(t) \exp\!\bigg( \int_0^t \beta(s) \dd{s} \bigg)
}
\end{aligned} u ( t ) ≤ α ( t ) exp ( ∫ 0 t β ( s ) d s )
Proof
Proof.
Starting from the “ordinary” Grönwall-Bellman inequality,
the fact that α ( t ) \alpha(t) α ( t ) is non-decreasing tells us that
α ( s ) ≤ α ( t ) \alpha(s) \le \alpha(t) α ( s ) ≤ α ( t ) for all s ≤ t s \le t s ≤ t , so:
u ( t ) ≤ α ( t ) + ∫ 0 t α ( s ) β ( s ) exp ( ∫ s t β ( r ) d r ) d s ≤ α ( t ) + α ( t ) ∫ 0 t β ( s ) exp ( ∫ s t β ( r ) d r ) d s \begin{aligned}
u(t)
&\le \alpha(t) + \int_0^t \alpha(s) \: \beta(s) \exp\!\bigg( \int_s^t \beta(r) \dd{r} \bigg) \dd{s}
\\
&\le \alpha(t) + \alpha(t) \int_0^t \beta(s) \exp\!\bigg( \int_s^t \beta(r) \dd{r} \bigg) \dd{s}
\end{aligned} u ( t ) ≤ α ( t ) + ∫ 0 t α ( s ) β ( s ) exp ( ∫ s t β ( r ) d r ) d s ≤ α ( t ) + α ( t ) ∫ 0 t β ( s ) exp ( ∫ s t β ( r ) d r ) d s
Now, consider the following straightforward identity, involving the exponential:
d d s exp ( ∫ s t β ( r ) d r ) = − β ( s ) exp ( ∫ s t β ( r ) d r ) \begin{aligned}
\dv{}{s}\exp\!\bigg( \int_s^t \beta(r) \dd{r} \bigg)
&= - \beta(s) \exp\!\bigg( \int_s^t \beta(r) \dd{r} \bigg)
\end{aligned} d s d exp ( ∫ s t β ( r ) d r ) = − β ( s ) exp ( ∫ s t β ( r ) d r )
By inserting this into normal Grönwall-Bellman inequality, we arrive at:
u ( t ) ≤ α ( t ) − α ( t ) ∫ 0 t d d s exp ( ∫ s t β ( r ) d r ) d s ≤ α ( t ) − α ( t ) [ ∫ d d s exp ( ∫ s t β ( r ) d r ) d s ] s = 0 s = t \begin{aligned}
u(t)
&\le \alpha(t) - \alpha(t) \int_0^t \dv{}{s}\exp\!\bigg( \int_s^t \beta(r) \dd{r} \bigg) \dd{s}
\\
&\le \alpha(t) - \alpha(t) \bigg[ \int \dv{}{s}\exp\!\bigg( \int_s^t \beta(r) \dd{r} \bigg) \dd{s} \bigg]_{s = 0}^{s = t}
\end{aligned} u ( t ) ≤ α ( t ) − α ( t ) ∫ 0 t d s d exp ( ∫ s t β ( r ) d r ) d s ≤ α ( t ) − α ( t ) [ ∫ d s d exp ( ∫ s t β ( r ) d r ) d s ] s = 0 s = t
Where we have converted the outer integral from definite to indefinite.
Continuing:
u ( t ) ≤ α ( t ) − α ( t ) [ exp ( ∫ s t β ( r ) d r ) ] s = 0 s = t ≤ α ( t ) − α ( t ) exp ( ∫ t t β ( r ) d r ) + α ( t ) exp ( ∫ 0 t β ( r ) d r ) ≤ α ( t ) − α ( t ) + α ( t ) exp ( ∫ 0 t β ( r ) d r ) \begin{aligned}
u(t)
&\le \alpha(t) - \alpha(t) \bigg[ \exp\!\bigg( \int_s^t \beta(r) \dd{r} \bigg) \bigg]_{s = 0}^{s = t}
\\
&\le \alpha(t) - \alpha(t) \exp\!\bigg( \int_t^t \beta(r) \dd{r} \bigg) + \alpha(t) \exp\!\bigg( \int_0^t \beta(r) \dd{r} \bigg)
\\
&\le \alpha(t) - \alpha(t) + \alpha(t) \exp\!\bigg( \int_0^t \beta(r) \dd{r} \bigg)
\end{aligned} u ( t ) ≤ α ( t ) − α ( t ) [ exp ( ∫ s t β ( r ) d r ) ] s = 0 s = t ≤ α ( t ) − α ( t ) exp ( ∫ t t β ( r ) d r ) + α ( t ) exp ( ∫ 0 t β ( r ) d r ) ≤ α ( t ) − α ( t ) + α ( t ) exp ( ∫ 0 t β ( r ) d r )
References
U.H. Thygesen,
Lecture notes on diffusions and stochastic differential equations ,
2021, Polyteknisk Kompendie.