Categories: Laser theory, Optics, Physics.

Laser rate equations

The Maxwell-Bloch equations (MBEs) give a fundamental description of light-matter interaction for a two-level quantum system for the purposes of laser theory. They govern the electric field E+\vb{E}^{+}, the induced polarization P+\vb{P}^{+}, and the total population inversion DD:

μ02P+t2=××E++n2c22E+t2P+t=(γ+iω0)P+ig2E+DDt=γ(D0D)+i2(PE+P+E)\begin{aligned} - \mu_0 \pdvn{2}{\vb{P}^{+}}{t} &= \nabla \cross \nabla \cross \vb{E}^{+} + \frac{n^2}{c^2} \pdvn{2}{\vb{E}^{+}}{t} \\ \pdv{\vb{P}^{+}}{t} &= - \Big( \gamma_\perp + i \omega_0 \Big) \vb{P}^{+} - \frac{i |g|^2}{\hbar} \vb{E}^{+} D \\ \pdv{D}{t} &= \gamma_\parallel (D_0 - D) + \frac{i 2}{\hbar} \Big( \vb{P}^{-} \cdot \vb{E}^{+} - \vb{P}^{+} \cdot \vb{E}^{-} \Big) \end{aligned}

Where nn is the background medium’s refractive index, ω0\omega_0 the two-level system’s gap resonance frequency, g ⁣ex^g ⁣|g| \equiv |\!\matrixel{e}{\vu{x}}{g}\!| the transition dipole moment, γ\gamma_\perp and γ\gamma_\parallel empirical decay rates, and D0D_0 the equilibrium inversion. Note that E=(E+)\vb{E}^{-} = (\vb{E}^{+})^*.

Let us make the following ansatz, where E0+\vb{E}_0^{+} and P0+\vb{P}_0^{+} are slowly-varying envelopes of a plane wave with angular frequency ωω0\omega \approx \omega_0:

E+(r,t)=12E0+(r,t)eiωtP+(r,t)=12P0+(r,t)eiωt\begin{aligned} \vb{E}^{+}(\vb{r}, t) = \frac{1}{2} \vb{E}_0^{+}(\vb{r}, t) \: e^{-i \omega t} \qquad \qquad \vb{P}^{+}(\vb{r}, t) = \frac{1}{2} \vb{P}_0^{+}(\vb{r}, t) \: e^{-i \omega t} \end{aligned}

We insert this into the first MBE, and assume that E0+\vb{E}_0^{+} and P0+\vb{P}_0^{+} vary so slowly that their second-order derivatives are negligible, i.e. 2E0+ ⁣/t20\ipdvn{2}{\vb{E}_0^{+}\!}{t} \approx 0 and 2P0+ ⁣/t20\ipdvn{2}{\vb{P}_0^{+}\!}{t} \approx 0, giving:

μ0(i2ωP0+t+ω2P0+)=××E0+n2c2(i2ωE0+t+ω2E0+)\begin{aligned} \mu_0 \bigg( i 2 \omega \pdv{\vb{P}_0^{+}}{t} + \omega^2 \vb{P}_0^{+} \bigg) = \nabla \cross \nabla \cross \vb{E}_0^{+} - \frac{n^2}{c^2} \bigg( i 2 \omega \pdv{\vb{E}_0^{+}}{t} + \omega^2 \vb{E}_0^{+} \bigg) \end{aligned}

To get rid of the double curl, consider the time-independent electromagnetic wave equation, where Ω\Omega is an eigenfrequency of the optical cavity in which lasing will occur:

××E0+=n2c2Ω2E0+\begin{aligned} \nabla \cross \nabla \cross \vb{E}_0^{+} = \frac{n^2}{c^2} \Omega^2 \vb{E}_0^{+} \end{aligned}

For simplicity, we restrict ourselves to a single-mode laser, where there is only one Ω\Omega and E0+\vb{E}_0^{+} to care about. Substituting the above equation into the first MBE yields:

i2ωP0+t+ω2P0+=ε0n2((Ω2ω2)E0+i2ωE0+t)\begin{aligned} i 2 \omega \pdv{\vb{P}_0^{+}}{t} + \omega^2 \vb{P}_0^{+} = \varepsilon_0 n^2 \bigg( (\Omega^2 - \omega^2) \vb{E}_0^{+} - i 2 \omega \pdv{\vb{E}_0^{+}}{t} \bigg) \end{aligned}

Where we used 1/c2=μ0ε01 / c^2 = \mu_0 \varepsilon_0. Assuming the light is more or less on-resonance ωΩ\omega \approx \Omega, we can approximate Ω2 ⁣ ⁣ω22ω(Ω ⁣ ⁣ω)\Omega^2 \!-\! \omega^2 \approx 2 \omega (\Omega \!-\! \omega), so:

i2P0+t+ωP0+=ε0n2(2(Ωω)E0+i2E0+t)\begin{aligned} i 2 \pdv{\vb{P}_0^{+}}{t} + \omega \vb{P}_0^{+} = \varepsilon_0 n^2 \bigg( 2 (\Omega - \omega) \vb{E}_0^{+} - i 2 \pdv{\vb{E}_0^{+}}{t} \bigg) \end{aligned}

Moving on to the second MBE, inserting the ansatz P+=P0+eiωt/2\vb{P}^{+} = \vb{P}_0^{+} e^{-i \omega t} / 2 leads to:

P0+t=(γ+i(ω0ω))P0+ig2E0+D\begin{aligned} \pdv{\vb{P}_0^{+}}{t} = - \Big( \gamma_\perp + i (\omega_0 - \omega) \Big) \vb{P}_0^{+} - \frac{i |g|^2}{\hbar} \vb{E}_0^{+} D \end{aligned}

Typically, γ\gamma_\perp is much larger than the rate of any other decay process, in which case P0+ ⁣/t\ipdv{\vb{P}_0^{+}\!}{t} is negligible compared to γP0+\gamma_\perp \vb{P}_0^{+}. Effectively, this means that the polarization P0+\vb{P}_0^{+} near-instantly follows the electric field E+ ⁣\vb{E}^{+}\!. Setting P0+ ⁣/t0\ipdv{\vb{P}_0^{+}\!}{t} \approx 0, the second MBE becomes:

P+=ig2(γ+i(ω0ω))E+D=g2γ(ω)γE+D\begin{aligned} \vb{P}^{+} = -\frac{i |g|^2}{\hbar (\gamma_\perp + i (\omega_0 - \omega))} \vb{E}^{+} D = \frac{|g|^2 \gamma(\omega)}{\hbar \gamma_\perp} \vb{E}^{+} D \end{aligned}

Where the Lorentzian gain curve γ(ω)\gamma(\omega) (which also appears in the SALT equation) represents the laser’s preferred spectrum for amplification, and is defined like so:

γ(ω)γ(ωω0)+iγ\begin{aligned} \gamma(\omega) \equiv \frac{\gamma_\perp}{(\omega - \omega_0) + i \gamma_\perp} \end{aligned}

Note that γ(ω)\gamma(\omega) satisfies the following relation, which will be useful to us later:

γ(ω)γ(ω)=γ(iγ+iγ)(ωω0)2+γ2=i2γ(ω)2\begin{aligned} \gamma^*(\omega) - \gamma(\omega) = \frac{\gamma_\perp (i \gamma_\perp + i \gamma_\perp)}{(\omega - \omega_0)^2 + \gamma_\perp^2} = i 2 |\gamma(\omega)|^2 \end{aligned}

Returning to the first MBE with P0+/t0\ipdv{\vb{P}_0^{+}}{t} \approx 0, we substitute the above expression for P0+\vb{P}_0^{+}:

E0+t=i(ωΩ)E0++iω2ε0n2P0+=i(ωΩ)E0++ig2ωγ(ω)2ε0γn2E0+D\begin{aligned} \pdv{\vb{E}_0^{+}}{t} &= i (\omega - \Omega) \vb{E}_0^{+} + i \frac{\omega}{2 \varepsilon_0 n^2} \vb{P}_0^{+} \\ &= i (\omega - \Omega) \vb{E}_0^{+} + i \frac{|g|^2 \omega \gamma(\omega)}{2 \hbar \varepsilon_0 \gamma_\perp n^2} \vb{E}_0^{+} D \end{aligned}

Next, we insert our ansatz for E+\vb{E}^{+} and P+\vb{P}^{+} into the third MBE, and rewrite P0+\vb{P}_0^{+} as above. Using the aforementioned identity for γ(ω)\gamma(\omega) and the fact that E0+E0=E2\vb{E}_0^{+} \cdot \vb{E}_0^{-} = |\vb{E}|^2, we find:

Dt=γ(D0D)+i2(g2γ(ω)γE0DE0+g2γ(ω)γE0+DE0)=γ(D0D)+ig222γ(γ(ω)γ(ω))E2D=γ(D0D)g22γγ(ω)2E2D\begin{aligned} \pdv{D}{t} &= \gamma_\parallel (D_0 - D) + \frac{i}{2 \hbar} \Big( \frac{|g|^2 \gamma^*(\omega)}{\hbar \gamma_\perp} \vb{E}_0^{-} D \cdot \vb{E}_0^{+} - \frac{|g|^2 \gamma(\omega)}{\hbar \gamma_\perp} \vb{E}_0^{+} D \cdot \vb{E}_0^{-} \Big) \\ &= \gamma_\parallel (D_0 - D) + \frac{i |g|^2}{2 \hbar^2 \gamma_\perp} \Big( \gamma^*(\omega) - \gamma(\omega) \Big) |\vb{E}|^2 D \\ &= \gamma_\parallel (D_0 - D) - \frac{|g|^2}{\hbar^2 \gamma_\perp} |\gamma(\omega)|^2 |\vb{E}|^2 D \end{aligned}

This is the prototype of the first laser rate equation. However, in order to have a practical set, we need an equation for E2|\vb{E}|^2, which we can obtain using the first MBE:

E2t=E0+E0t+E0E0+t=i(ωΩ)E2ig2ωγ(ω)2ε0γn2E2D+i(ωΩ)E2+ig2ωγ(ω)2ε0γn2E2D=i(ΩΩ)E2+ig2ω2ε0γn2(γ(ω)γ(ω))E2D=2Im(Ω)E2+g2ωε0γn2γ(ω)2E2D\begin{aligned} \pdv{|\vb{E}|^2}{t} &= \vb{E}_0^{+} \pdv{\vb{E}_0^{-}}{t} + \vb{E}_0^{-} \pdv{\vb{E}_0^{+}}{t} \\ &= -i (\omega - \Omega^*) |\vb{E}|^2 - i \frac{|g|^2 \omega \gamma^*(\omega)}{2 \hbar \varepsilon_0 \gamma_\perp n^2} |\vb{E}|^2 D + i (\omega - \Omega) |\vb{E}|^2 + i \frac{|g|^2 \omega \gamma(\omega)}{2 \hbar \varepsilon_0 \gamma_\perp n^2} |\vb{E}|^2 D \\ &= i (\Omega^* - \Omega) |\vb{E}|^2 + i \frac{|g|^2 \omega}{2 \hbar \varepsilon_0 \gamma_\perp n^2} \Big(\gamma(\omega) - \gamma^*(\omega)\Big) |\vb{E}|^2 D \\ &= 2 \Imag(\Omega) |\vb{E}|^2 + \frac{|g|^2 \omega}{\hbar \varepsilon_0 \gamma_\perp n^2} |\gamma(\omega)|^2 |\vb{E}|^2 D \end{aligned}

Where Im(Ω)<0\Imag(\Omega) < 0 represents the fact that the laser cavity is leaky. We now have the laser rate equations, although they are still in an unidiomatic form:

E2t=2Im(Ω)E2+g2ωε0γn2γ(ω)2E2DDt=γ(D0D)g22γγ(ω)2E2D\begin{aligned} \boxed{ \begin{aligned} \pdv{|\vb{E}|^2}{t} &= 2 \Imag(\Omega) |\vb{E}|^2 + \frac{|g|^2 \omega}{\hbar \varepsilon_0 \gamma_\perp n^2} |\gamma(\omega)|^2 |\vb{E}|^2 D \\ \pdv{D}{t} &= \gamma_\parallel (D_0 - D) - \frac{|g|^2}{\hbar^2 \gamma_\perp} |\gamma(\omega)|^2 |\vb{E}|^2 D \end{aligned} } \end{aligned}

To rewrite this, we replace E2|\vb{E}|^2 with the photon number NpN_p as follows, with U=ε0n2E2/2U = \varepsilon_0 n^2 |\vb{E}|^2 / 2 being the energy density of the light:

Np=Uω=ε0n22ωE2\begin{aligned} N_{p} = \frac{U}{\hbar \omega} = \frac{\varepsilon_0 n^2}{2 \hbar \omega} |\vb{E}|^2 \end{aligned}

Furthermore, consider the definition of the inversion DD: because a photon emission annihilates an electron-hole pair, it reduces DD by 22. Since lasing is only possible for D>0D > 0, we can replace DD with the conduction band’s electron population NeN_e, which is reduced by 11 whenever a photon is emitted. The laser rate equations then take the following standard form:

Npt=γpNp+GNpNeNet=RpumpγeNeGNpNe\begin{aligned} \boxed{ \begin{aligned} \pdv{N_p}{t} &= - \gamma_p N_p + G N_p N_e \\ \pdv{N_e}{t} &= R_\mathrm{pump} - \gamma_e N_e - G N_p N_e \end{aligned} } \end{aligned}

Where γe\gamma_e is a redefinition of γ\gamma_\parallel depending on the electron decay processes. The photon loss rate γp\gamma_p, the gain GG, and the carrier supply rate RpumpR_\mathrm{pump} are defined like so:

γp=2Im(Ω)=QRe(Ω)Gg2ωε0γn2γ(ω)2RpumpγD0\begin{aligned} \gamma_p = - 2 \Imag(\Omega) = \frac{Q}{\Real(\Omega)} \qquad \quad G \equiv \frac{|g|^2 \omega}{\hbar \varepsilon_0 \gamma_\perp n^2} |\gamma(\omega)|^2 \qquad \quad R_\mathrm{pump} \equiv \gamma_\parallel D_0 \end{aligned}

With QQ being the cavity mode’s quality factor. The nonlinear coupling term GNpNeG N_p N_e represents stimulated emission, which is the key to lasing.

To understand the behaviour of a laser, consider these equations in a steady state, i.e. where NpN_p and NeN_e are constant in tt:

0=γpNp+GNpNe0=RpumpγeNeGNpNe\begin{aligned} 0 &= - \gamma_p N_p + G N_p N_e \\ 0 &= R_\mathrm{pump} - \gamma_e N_e - G N_p N_e \end{aligned}

In addition to the trivial solution Np=0N_p = 0, we can also have Np>0N_p > 0. Isolating NpN_p’s equation for NeN_e and inserting that into NeN_e’s equation, we find:

Ne=γpG    Np=1γp(RpumpγeγpG)\begin{aligned} N_e = \frac{\gamma_p}{G} \qquad \implies \qquad \boxed{ N_p = \frac{1}{\gamma_p} \bigg( R_\mathrm{pump} - \frac{\gamma_e \gamma_p}{G} \bigg) } \end{aligned}

The quantity Rthrγeγp/GR_\mathrm{thr} \equiv \gamma_e \gamma_p / G is called the lasing threshold: if RpumpRthrR_\mathrm{pump} \ge R_\mathrm{thr}, the laser is active, meaning that NpN_p is big enough to cause a “chain reaction” of stimulated emission that consumes all surplus carriers to maintain a steady state.

The point is that NeN_e is independent of the electron supply RpumpR_\mathrm{pump}, because all additional electrons are almost immediately annihilated by stimulated emission. Consequently NpN_p increases linearly as RpumpR_\mathrm{pump} is raised, at a much steeper slope than would be possible below threshold. The output of the cavity is proportional to NpN_p, so the brightness is also linear.

Unfortunately, by deriving the laser rate equations from the MBEs, we lost some interesting and important effects, most notably spontaneous emission, which is needed for NpN_p to grow if RpumpR_\mathrm{pump} is below threshold.

For this reason, the laser rate equations are typically presented in a more empirical form, which “bookkeeps” the processes affecting NpN_p and NeN_e. Consider the following example:

Npt=(γout+γabs+γloss)Np+γsponNe+GstimNpNeNet=Rpump+γabsNp(γspon+γn.r.+γleak)NeGstimNpNe\begin{aligned} \boxed{ \begin{aligned} \pdv{N_p}{t} &= - (\gamma_\mathrm{out} + \gamma_\mathrm{abs} + \gamma_\mathrm{loss}) N_p + \gamma_\mathrm{spon} N_e + G_\mathrm{stim} N_p N_e \\ \pdv{N_e}{t} &= R_\mathrm{pump} + \gamma_\mathrm{abs} N_p - (\gamma_\mathrm{spon} + \gamma_\mathrm{n.r.} + \gamma_\mathrm{leak}) N_e - G_\mathrm{stim} N_p N_e \end{aligned} } \end{aligned}

Where γout\gamma_\mathrm{out} represents the cavity’s usable output, γabs\gamma_\mathrm{abs} the medium’s absorption, γloss\gamma_\mathrm{loss} scattering losses, γspon\gamma_\mathrm{spon} spontaneous emission, γn.r.\gamma_\mathrm{n.r.} non-radiative electron-hole recombination, and γleak\gamma_\mathrm{leak} the fact that some carriers leak away before they can be used for emission.

Unsurprisingly, this form is much harder to analyze, but more accurately describes the dynamics inside a laser. To make matters even worse, many of these decay rates depend on NpN_p or NeN_e, so solutions can only be obtained numerically.

References

  1. D. Meschede, Optics, light and lasers, Wiley.
  2. L.A. Coldren, S.W. Corzine, M.L. Mašanović, Diode lasers and photonic integrated circuits, 2nd edition, Wiley.