Categories:
Physics ,
Quantum mechanics .
Lindhard function
The Lindhard function describes the response of
jellium (i.e. a free electron gas)
to an external perturbation, and is a quantum-mechanical
alternative to the Drude model .
We start from the Kubo formula
for the electron density operator n ^ \hat{n} n ^ ,
which describes the change in ⟨ n ^ ⟩ \Expval{\hat{n}} ⟨ n ^ ⟩
due to a time-dependent perturbation H ^ 1 \hat{H}_1 H ^ 1 :
δ ⟨ n ^ ⟩ ( r , t ) = − i ℏ ∫ − ∞ ∞ Θ ( t − t ′ ) ⟨ [ n ^ I ( r , t ) , H ^ 1 , I ( t ′ ) ] ⟩ 0 d t ′ \begin{aligned}
\delta\!\Expval{ {\hat{n}}}\!(\vb{r}, t)
= -\frac{i}{\hbar} \int_{-\infty}^\infty \Theta(t - t') \Expval{\Comm{\hat{n}_I(\vb{r}, t)}{\hat{H}_{1,I}(t')}}_0 \dd{t'}
\end{aligned} δ ⟨ n ^ ⟩ ( r , t ) = − ℏ i ∫ − ∞ ∞ Θ ( t − t ′ ) ⟨ [ n ^ I ( r , t ) , H ^ 1 , I ( t ′ ) ] ⟩ 0 d t ′
Where the subscript I I I refers to the interaction picture ,
and the expectation ⟨ ⟩ 0 \Expval{}_0 ⟨ ⟩ 0 is for
a thermal equilibrium before the perturbation was applied.
Now consider a harmonic H ^ 1 \hat{H}_1 H ^ 1 :
H ^ 1 , S ( t ) = e i ( ω + i η ) t ∫ − ∞ ∞ U ( r ) n ^ S ( r ) d r \begin{aligned}
\hat{H}_{1,S}(t)
= e^{i (\omega + i \eta) t} \int_{-\infty}^\infty U(\vb{r}) \: \hat{n}_S(\vb{r}) \dd{\vb{r}}
\end{aligned} H ^ 1 , S ( t ) = e i ( ω + i η ) t ∫ − ∞ ∞ U ( r ) n ^ S ( r ) d r
Where S S S is the Schrödinger picture,
η \eta η is a positive infinitesimal to ensure convergence later,
and U ( r ) U(\vb{r}) U ( r ) is an arbitrary potential function.
The Kubo formula becomes:
δ ⟨ n ^ ⟩ ( r , t ) = ∬ − ∞ ∞ χ ( r , r ′ ; t , t ′ ) U ( r ′ ) e i ( ω + i η ) t ′ d t ′ d r ′ \begin{aligned}
\delta\!\Expval{ {\hat{n}}}\!(\vb{r}, t)
= \iint_{-\infty}^\infty \chi(\vb{r}, \vb{r}'; t, t') \: U(\vb{r}') \: e^{i (\omega + i \eta) t'} \dd{t'} \dd{\vb{r}'}
\end{aligned} δ ⟨ n ^ ⟩ ( r , t ) = ∬ − ∞ ∞ χ ( r , r ′ ; t , t ′ ) U ( r ′ ) e i ( ω + i η ) t ′ d t ′ d r ′
Here, χ \chi χ is the density-density correlation function,
i.e. a two-particle Green’s function :
χ ( r , r ′ ; t , t ′ ) ≡ − i ℏ Θ ( t − t ′ ) ⟨ [ n ^ I ( r , t ) , n ^ I ( r ′ , t ′ ) ] ⟩ 0 \begin{aligned}
\chi(\vb{r}, \vb{r}'; t, t')
\equiv - \frac{i}{\hbar} \Theta(t - t') \Expval{\Comm{\hat{n}_I(\vb{r}, t)}{\hat{n}_I(\vb{r}', t')}}_0
\end{aligned} χ ( r , r ′ ; t , t ′ ) ≡ − ℏ i Θ ( t − t ′ ) ⟨ [ n ^ I ( r , t ) , n ^ I ( r ′ , t ′ ) ] ⟩ 0
Let us assume that the unperturbed system (i.e. without U U U ) is spatially uniform,
so that χ \chi χ only depends on the difference r − r ′ \vb{r} - \vb{r}' r − r ′ .
We then take its Fourier transform
r − r ′ → q \vb{r}\!-\!\vb{r}' \to \vb{q} r − r ′ → q :
χ ( q ; t , t ′ ) = ∫ − ∞ ∞ χ ( r − r ′ ; t , t ′ ) e − i q ⋅ ( r − r ′ ) d r = − i ℏ Θ ( t − t ′ ) ( 2 π ) 2 D ∭ ⟨ [ n ^ I ( q 1 , t ) , n ^ I ( q 2 , t ′ ) ] ⟩ 0 e i q 1 ⋅ r e i q 2 ⋅ r ′ e − i q ⋅ ( r − r ′ ) d q 1 d q 2 d r \begin{aligned}
\chi(\vb{q}; t, t')
&= \int_{-\infty}^\infty \chi(\vb{r} - \vb{r}'; t, t') \: e^{- i \vb{q} \cdot (\vb{r} - \vb{r}')} \dd{\vb{r}}
\\
&= -\frac{i}{\hbar} \frac{\Theta(t \!-\! t')}{(2 \pi)^{2D}} \iiint
\Expval{\Comm{\hat{n}_I(\vb{q}_1, t)}{\hat{n}_I(\vb{q}_2, t')}}_0
\: e^{i \vb{q}_1 \cdot \vb{r}} e^{i \vb{q}_2 \cdot \vb{r}'} e^{- i \vb{q} \cdot (\vb{r} - \vb{r}')} \dd{\vb{q}_1} \dd{\vb{q}_2} \dd{\vb{r}}
\end{aligned} χ ( q ; t , t ′ ) = ∫ − ∞ ∞ χ ( r − r ′ ; t , t ′ ) e − i q ⋅ ( r − r ′ ) d r = − ℏ i ( 2 π ) 2 D Θ ( t − t ′ ) ∭ ⟨ [ n ^ I ( q 1 , t ) , n ^ I ( q 2 , t ′ ) ] ⟩ 0 e i q 1 ⋅ r e i q 2 ⋅ r ′ e − i q ⋅ ( r − r ′ ) d q 1 d q 2 d r
Where both n ^ I \hat{n}_I n ^ I have been written as inverse Fourier transforms,
giving a factor ( 2 π ) − 2 D (2 \pi)^{-2 D} ( 2 π ) − 2 D , with D D D being the number of spatial dimensions.
We rearrange to get a Dirac delta function δ \delta δ :
χ ( q ; t , t ′ ) = − i ℏ Θ ( t − t ′ ) ( 2 π ) 2 D ∭ ⟨ [ n ^ I ( q 1 , t ) , n ^ I ( q 2 , t ′ ) ] ⟩ 0 e i ( q 1 − q ) ⋅ r e i ( q 2 + q ) ⋅ r ′ d q 1 d q 2 d r = − i ℏ Θ ( t − t ′ ) ( 2 π ) D ∬ ⟨ [ n ^ I ( q 1 , t ) , n ^ I ( q 2 , t ′ ) ] ⟩ 0 δ ( q 1 − q ) e i ( q 2 + q ) ⋅ r ′ d q 1 d q 2 = − i ℏ Θ ( t − t ′ ) ( 2 π ) D ∫ ⟨ [ n ^ I ( q , t ) , n ^ I ( q 2 , t ′ ) ] ⟩ 0 e i ( q 2 + q ) ⋅ r ′ d q 2 \begin{aligned}
\chi(\vb{q}; t, t')
&= -\frac{i}{\hbar} \frac{\Theta(t \!-\! t')}{(2 \pi)^{2D}} \iiint
\Expval{\Comm{\hat{n}_I(\vb{q}_1, t)}{\hat{n}_I(\vb{q}_2, t')}}_0
\: e^{i (\vb{q}_1 - \vb{q}) \cdot \vb{r}} e^{i (\vb{q}_2 + \vb{q}) \cdot \vb{r}'} \dd{\vb{q}_1} \dd{\vb{q}_2} \dd{\vb{r}}
\\
&= -\frac{i}{\hbar} \frac{\Theta(t \!-\! t')}{(2 \pi)^D} \iint
\Expval{\Comm{\hat{n}_I(\vb{q}_1, t)}{\hat{n}_I(\vb{q}_2, t')}}_0
\: \delta(\vb{q}_1 \!-\! \vb{q}) \: e^{i (\vb{q}_2 + \vb{q}) \cdot \vb{r}'} \dd{\vb{q}_1} \dd{\vb{q}_2}
\\
&= -\frac{i}{\hbar} \frac{\Theta(t \!-\! t')}{(2 \pi)^D} \int
\Expval{\Comm{\hat{n}_I(\vb{q}, t)}{\hat{n}_I(\vb{q}_2, t')}}_0
\: e^{i (\vb{q}_2 + \vb{q}) \cdot \vb{r}'} \dd{\vb{q}_2}
\end{aligned} χ ( q ; t , t ′ ) = − ℏ i ( 2 π ) 2 D Θ ( t − t ′ ) ∭ ⟨ [ n ^ I ( q 1 , t ) , n ^ I ( q 2 , t ′ ) ] ⟩ 0 e i ( q 1 − q ) ⋅ r e i ( q 2 + q ) ⋅ r ′ d q 1 d q 2 d r = − ℏ i ( 2 π ) D Θ ( t − t ′ ) ∬ ⟨ [ n ^ I ( q 1 , t ) , n ^ I ( q 2 , t ′ ) ] ⟩ 0 δ ( q 1 − q ) e i ( q 2 + q ) ⋅ r ′ d q 1 d q 2 = − ℏ i ( 2 π ) D Θ ( t − t ′ ) ∫ ⟨ [ n ^ I ( q , t ) , n ^ I ( q 2 , t ′ ) ] ⟩ 0 e i ( q 2 + q ) ⋅ r ′ d q 2
On the left, r ′ \vb{r}' r ′ does not appear, so it must also disappear on the right.
If we choose an arbitrary (hyper)cube of volume V V V in real space,
then clearly ∫ V d r ′ = V \int_V \dd{\vb{r}'} = V ∫ V d r ′ = V . Therefore:
χ ( q ; t , t ′ ) = − i ℏ Θ ( t − t ′ ) ( 2 π ) D 1 V ∫ V ∫ − ∞ ∞ ⟨ [ n ^ I ( q , t ) , n ^ I ( q 2 , t ′ ) ] ⟩ 0 e i ( q 2 + q ) ⋅ r ′ d q 2 d r ′ \begin{aligned}
\chi(\vb{q}; t, t')
&= -\frac{i}{\hbar} \frac{\Theta(t \!-\! t')}{(2 \pi)^D} \frac{1}{V} \int_V \int_{-\infty}^\infty
\Expval{\Comm{\hat{n}_I(\vb{q}, t)}{\hat{n}_I(\vb{q}_2, t')}}_0
\: e^{i (\vb{q}_2 + \vb{q}) \cdot \vb{r}'} \dd{\vb{q}_2} \dd{\vb{r}'}
\end{aligned} χ ( q ; t , t ′ ) = − ℏ i ( 2 π ) D Θ ( t − t ′ ) V 1 ∫ V ∫ − ∞ ∞ ⟨ [ n ^ I ( q , t ) , n ^ I ( q 2 , t ′ ) ] ⟩ 0 e i ( q 2 + q ) ⋅ r ′ d q 2 d r ′
For V → ∞ V \to \infty V → ∞ we get a Dirac delta function,
but in fact the conclusion holds for finite V V V too:
χ ( q ; t , t ′ ) = − i ℏ Θ ( t − t ′ ) 1 V ∫ − ∞ ∞ ⟨ [ n ^ I ( q , t ) , n ^ I ( q 2 , t ′ ) ] ⟩ 0 δ ( q 2 + q ) d q 2 = − i ℏ Θ ( t − t ′ ) 1 V ⟨ [ n ^ I ( q , t ) , n ^ I ( − q , t ′ ) ] ⟩ 0 \begin{aligned}
\chi(\vb{q}; t, t')
&= -\frac{i}{\hbar} \Theta(t \!-\! t') \frac{1}{V} \int_{-\infty}^\infty
\Expval{\Comm{\hat{n}_I(\vb{q}, t)}{\hat{n}_I(\vb{q}_2, t')}}_0 \: \delta(\vb{q}_2 \!+\! \vb{q}) \dd{\vb{q}_2}
\\
&= -\frac{i}{\hbar} \Theta(t \!-\! t') \frac{1}{V} \Expval{\Comm{\hat{n}_I(\vb{q}, t)}{\hat{n}_I(-\vb{q}, t')}}_0
\end{aligned} χ ( q ; t , t ′ ) = − ℏ i Θ ( t − t ′ ) V 1 ∫ − ∞ ∞ ⟨ [ n ^ I ( q , t ) , n ^ I ( q 2 , t ′ ) ] ⟩ 0 δ ( q 2 + q ) d q 2 = − ℏ i Θ ( t − t ′ ) V 1 ⟨ [ n ^ I ( q , t ) , n ^ I ( − q , t ′ ) ] ⟩ 0
Similarly, if the unperturbed Hamiltonian H ^ 0 \hat{H}_0 H ^ 0 is time-independent,
χ \chi χ only depends on the time difference t − t ′ t - t' t − t ′ .
Note that δ ⟨ n ^ ⟩ \delta{\Expval{\hat{n}}} δ ⟨ n ^ ⟩ already has the form of a Fourier transform,
which gives us an opportunity to rewrite χ \chi χ
in the Lehmann representation :
χ ( q , ω ) = 1 Z V ∑ ν ν ′ ⟨ ν ∣ n ^ S ( q ) ∣ ν ′ ⟩ ⟨ ν ′ ∣ n ^ S ( − q ) ∣ ν ⟩ ℏ ( ω + i η ) + E ν − E ν ′ ( e − β E ν − e − β E ν ′ ) \begin{aligned}
\chi(\vb{q}, \omega)
= \frac{1}{Z V} \sum_{\nu \nu'}
\frac{\matrixel{\nu}{\hat{n}_S(\vb{q})}{\nu'} \matrixel{\nu'}{\hat{n}_S(-\vb{q})}{\nu}}{\hbar (\omega + i \eta) + E_\nu - E_{\nu'}}
\Big( e^{-\beta E_\nu} - e^{- \beta E_{\nu'}} \Big)
\end{aligned} χ ( q , ω ) = Z V 1 ν ν ′ ∑ ℏ ( ω + i η ) + E ν − E ν ′ ⟨ ν ∣ n ^ S ( q ) ∣ ν ′ ⟩ ⟨ ν ′ ∣ n ^ S ( − q ) ∣ ν ⟩ ( e − β E ν − e − β E ν ′ )
Where ∣ ν ⟩ \Ket{\nu} ∣ ν ⟩ and ∣ ν ′ ⟩ \Ket{\nu'} ∣ ν ′ ⟩ are many-electron eigenstates of H ^ 0 \hat{H}_0 H ^ 0 ,
and Z Z Z is the grand partition function .
According to the convolution theorem
δ ⟨ n ^ ⟩ ( q , ω ) = χ ( q , ω ) U ( q ) \delta{\Expval{\hat{n}}}(\vb{q}, \omega) = \chi(\vb{q}, \omega) \: U(\vb{q}) δ ⟨ n ^ ⟩ ( q , ω ) = χ ( q , ω ) U ( q ) .
In anticipation, we swap ν \nu ν and ν ′ ′ \nu'' ν ′′ in the second term,
so the general response function is written as:
χ ( q , ω ) = 1 Z V ∑ ν ν ′ ( ⟨ ν ∣ n ^ ( q ) ∣ ν ′ ⟩ ⟨ ν ′ ∣ n ^ ( − q ) ∣ ν ⟩ ℏ ( ω + i η ) + E ν − E ν ′ − ⟨ ν ∣ n ^ ( − q ) ∣ ν ′ ⟩ ⟨ ν ′ ∣ n ^ ( q ) ∣ ν ⟩ ℏ ( ω + i η ) + E ν ′ − E ν ) e − β E ν \begin{aligned}
\chi(\vb{q}, \omega)
= \frac{1}{Z V} \sum_{\nu \nu'} \bigg(
\frac{\matrixel{\nu}{\hat{n}(\vb{q})}{\nu'} \matrixel{\nu'}{\hat{n}(-\vb{q})}{\nu}}
{\hbar (\omega + i \eta) + E_\nu - E_{\nu'}}
- \frac{\matrixel{\nu}{\hat{n}(-\vb{q})}{\nu'} \matrixel{\nu'}{\hat{n}(\vb{q})}{\nu}}
{\hbar (\omega + i \eta) + E_{\nu'} - E_\nu} \bigg) e^{-\beta E_\nu}
\end{aligned} χ ( q , ω ) = Z V 1 ν ν ′ ∑ ( ℏ ( ω + i η ) + E ν − E ν ′ ⟨ ν ∣ n ^ ( q ) ∣ ν ′ ⟩ ⟨ ν ′ ∣ n ^ ( − q ) ∣ ν ⟩ − ℏ ( ω + i η ) + E ν ′ − E ν ⟨ ν ∣ n ^ ( − q ) ∣ ν ′ ⟩ ⟨ ν ′ ∣ n ^ ( q ) ∣ ν ⟩ ) e − β E ν
All operators are in the Schrödinger picture from now on, hence we dropped the subscript S S S .
To proceed, we need to rewrite n ^ ( q ) \hat{n}(\vb{q}) n ^ ( q ) somehow.
If we neglect electron-electron interactions,
the single-particle states are simply plane waves, in which case:
n ^ ( q ) = ∑ σ k c ^ σ , k † c ^ σ , k + q n ^ ( − q ) = n ^ † ( q ) \begin{aligned}
\hat{n}(\vb{q})
= \sum_{\sigma \vb{k}} \hat{c}_{\sigma,\vb{k}}^\dagger \hat{c}_{\sigma,\vb{k} + \vb{q}}
\qquad \qquad
\hat{n}(-\vb{q})
= \hat{n}^\dagger(\vb{q})
\end{aligned} n ^ ( q ) = σ k ∑ c ^ σ , k † c ^ σ , k + q n ^ ( − q ) = n ^ † ( q )
Proof
Proof.
Starting from the general definition of n ^ \hat{n} n ^ ,
we write out the field operators Ψ ^ ( r ) \hat{\Psi}(\vb{r}) Ψ ^ ( r ) ,
and insert the known non-interacting single-electron orbitals
ψ k ( r ) = e i k ⋅ r / V \psi_\vb{k}(\vb{r}) = e^{i \vb{k} \cdot \vb{r}} / \sqrt{V} ψ k ( r ) = e i k ⋅ r / V :
n ^ ( r ) ≡ Ψ ^ † ( r ) Ψ ^ ( r ) = ∑ k k ′ ψ k ∗ ( r ) ψ k ′ ( r ) c ^ k † c ^ k ′ = 1 V ∑ k k ′ e i ( k ′ − k ) ⋅ r c ^ k † c ^ k ′ \begin{aligned}
\hat{n}(\vb{r})
\equiv \hat{\Psi}{}^\dagger(\vb{r}) \hat{\Psi}(\vb{r})
= \sum_{\vb{k} \vb{k}'} \psi_{\vb{k}}^*(\vb{r}) \: \psi_{\vb{k}'}(\vb{r})\: \hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k}'}
= \frac{1}{V} \sum_{\vb{k} \vb{k}'} e^{i (\vb{k}' - \vb{k}) \cdot \vb{r}} \hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k}'}
\end{aligned} n ^ ( r ) ≡ Ψ ^ † ( r ) Ψ ^ ( r ) = k k ′ ∑ ψ k ∗ ( r ) ψ k ′ ( r ) c ^ k † c ^ k ′ = V 1 k k ′ ∑ e i ( k ′ − k ) ⋅ r c ^ k † c ^ k ′
Taking the Fourier transfom yields a Dirac delta function δ \delta δ :
n ^ ( q ) = 1 V ∫ − ∞ ∞ ∑ k k ′ c ^ k † c ^ k ′ e i ( k ′ − k − q ) ⋅ r d r = ( 2 π ) D V ∑ k k ′ c ^ k † c ^ k ′ δ ( k ′ − k − q ) \begin{aligned}
\hat{n}(\vb{q})
= \frac{1}{V} \int_{-\infty}^\infty
\sum_{\vb{k} \vb{k}'} \hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k}'} \: e^{i (\vb{k}' - \vb{k} - \vb{q})\cdot \vb{r}} \dd{\vb{r}}
= \frac{(2 \pi)^D}{V} \sum_{\vb{k} \vb{k}'} \hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k}'} \: \delta(\vb{k}' \!-\! \vb{k} \!-\! \vb{q})
\end{aligned} n ^ ( q ) = V 1 ∫ − ∞ ∞ k k ′ ∑ c ^ k † c ^ k ′ e i ( k ′ − k − q ) ⋅ r d r = V ( 2 π ) D k k ′ ∑ c ^ k † c ^ k ′ δ ( k ′ − k − q )
If we impose periodic boundary conditions
on our D D D -dimensional hypercube of volume V V V ,
then k \vb{k} k becomes discrete,
with per-value spacing 2 π / V 1 / D 2 \pi / V^{1/D} 2 π / V 1/ D along each axis.
Consequently, each orbital ψ k \psi_\vb{k} ψ k uniquely occupies
a volume ( 2 π ) D / V (2 \pi)^D / V ( 2 π ) D / V in k \vb{k} k -space, so we make the approximation
∑ k ≈ V / ( 2 π ) D ∫ − ∞ ∞ d k \sum_{\vb{k}} \approx V / (2 \pi)^D \int_{-\infty}^\infty \dd{\vb{k}} ∑ k ≈ V / ( 2 π ) D ∫ − ∞ ∞ d k .
This becomes exact for V → ∞ V \to \infty V → ∞ ,
in which case k \vb{k} k also becomes continuous again,
which is what we want for jellium.
We apply this standard trick from condensed matter physics to n ^ \hat{n} n ^ ,
and V V V cancels out:
n ^ ( q ) = ( 2 π ) D V V ( 2 π ) D ∑ k ∫ − ∞ ∞ c ^ k † c ^ k ′ δ ( k ′ − k − q ) d k ′ = ∑ k c ^ k † c ^ k + q \begin{aligned}
\hat{n}(\vb{q})
&= \frac{(2 \pi)^D}{V} \frac{V}{(2 \pi)^D} \sum_{\vb{k}} \int_{-\infty}^\infty
\hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k}'} \: \delta(\vb{k}' \!-\! \vb{k} \!-\! \vb{q}) \dd{\vb{k}'}
= \sum_{\vb{k}} \hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k} + \vb{q}}
\end{aligned} n ^ ( q ) = V ( 2 π ) D ( 2 π ) D V k ∑ ∫ − ∞ ∞ c ^ k † c ^ k ′ δ ( k ′ − k − q ) d k ′ = k ∑ c ^ k † c ^ k + q
For negated arguments, we simply define k ′ ≡ k − q \vb{k}' \equiv \vb{k} - \vb{q} k ′ ≡ k − q
to show that n ^ ( − q ) = n ^ † ( q ) \hat{n}(-\vb{q}) = \hat{n}{}^\dagger(\vb{q}) n ^ ( − q ) = n ^ † ( q ) ,
which can also be understood as a consequence of n ^ ( r ) \hat{n}(\vb{r}) n ^ ( r ) being real:
n ^ ( − q ) = ∑ k c ^ k † c ^ k − q = ∑ k ′ c ^ k ′ + q † c ^ k ′ = n ^ † ( q ) \begin{aligned}
\hat{n}(-\vb{q})
= \sum_{\vb{k}} \hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k} - \vb{q}}
= \sum_{\vb{k}'} \hat{c}_{\vb{k}' + \vb{q}}^\dagger \hat{c}_{\vb{k}'}
= \hat{n}^\dagger(\vb{q})
\end{aligned} n ^ ( − q ) = k ∑ c ^ k † c ^ k − q = k ′ ∑ c ^ k ′ + q † c ^ k ′ = n ^ † ( q )
The summation variable k \vb{k} k has an associated spin σ \sigma σ ,
and n ^ \hat{n} n ^ does not carry any spin.
When neglecting interactions, it is tradition to rename χ \chi χ to χ 0 \chi_0 χ 0 .
We insert n ^ \hat{n} n ^ , suppressing spin:
χ 0 = 1 Z V ∑ k k ′ ∑ ν ν ′ ( ⟨ ν ∣ c ^ k † c ^ k + q ∣ ν ′ ⟩ ⟨ ν ′ ∣ c ^ k ′ + q † c ^ k ′ ∣ ν ⟩ ℏ ( ω + i η ) + E ν − E ν ′ − ⟨ ν ∣ c ^ k + q † c ^ k ∣ ν ′ ⟩ ⟨ ν ′ ∣ c ^ k ′ † c ^ k ′ + q ∣ ν ⟩ ℏ ( ω + i η ) + E ν ′ − E ν ) e − β E ν \begin{aligned}
\chi_0
&= \frac{1}{Z V} \sum_{\vb{k} \vb{k}'} \sum_{\nu \nu'} \bigg(
\frac{\matrixel{\nu}{\hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k} + \vb{q}}}{\nu'}
\matrixel{\nu'}{\hat{c}_{\vb{k}' + \vb{q}}^\dagger \hat{c}_{\vb{k}'}}{\nu}}
{\hbar (\omega + i \eta) + E_\nu - E_{\nu'}}
- \frac{\matrixel{\nu}{\hat{c}_{\vb{k} + \vb{q}}^\dagger \hat{c}_{\vb{k}}}{\nu'}
\matrixel{\nu'}{\hat{c}_{\vb{k}'}^\dagger \hat{c}_{\vb{k}' + \vb{q}}}{\nu}}
{\hbar (\omega + i \eta) + E_{\nu'} - E_\nu} \bigg) e^{-\beta E_\nu}
\end{aligned} χ 0 = Z V 1 k k ′ ∑ ν ν ′ ∑ ( ℏ ( ω + i η ) + E ν − E ν ′ ⟨ ν ∣ c ^ k † c ^ k + q ∣ ν ′ ⟩ ⟨ ν ′ ∣ c ^ k ′ + q † c ^ k ′ ∣ ν ⟩ − ℏ ( ω + i η ) + E ν ′ − E ν ⟨ ν ∣ c ^ k + q † c ^ k ∣ ν ′ ⟩ ⟨ ν ′ ∣ c ^ k ′ † c ^ k ′ + q ∣ ν ⟩ ) e − β E ν
Here, ⟨ ν ∣ c ^ k † c ^ k + q ∣ ν ′ ⟩ \matrixel{\nu}{\hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k} + \vb{q}}}{\nu'} ⟨ ν ∣ c ^ k † c ^ k + q ∣ ν ′ ⟩
is only nonzero if ∣ ν ′ ⟩ \Ket{\nu'} ∣ ν ′ ⟩ is contructed from ∣ ν ⟩ \Ket{\nu} ∣ ν ⟩
by moving an electron from k \vb{k} k to k + q \vb{k} \!+\! \vb{q} k + q ,
and analogously for the other inner products.
As a result, k = k ′ \vb{k} = \vb{k}' k = k ′ (and σ = σ ′ \sigma = \sigma' σ = σ ′ ).
For the same reason, the energy difference E ν − E ν ′ E_\nu \!-\! E_{\nu'} E ν − E ν ′
can simply be replaced by the cost of the single-particle excitation
ξ k − ξ k + q \xi_{\vb{k}} \!-\! \xi_{\vb{k} + \vb{q}} ξ k − ξ k + q ,
where ξ k \xi_{\vb{k}} ξ k is the energy of a k \vb{k} k -orbital.
Therefore:
χ 0 = 1 Z V ∑ k ∑ ν ν ′ ( ⟨ ν ∣ c ^ k † c ^ k + q ∣ ν ′ ⟩ ⟨ ν ′ ∣ c ^ k + q † c ^ k ∣ ν ⟩ ℏ ( ω + i η ) + ξ k − ξ k + q − ⟨ ν ∣ c ^ k + q † c ^ k ∣ ν ′ ⟩ ⟨ ν ′ ∣ c ^ k † c ^ k + q ∣ ν ⟩ ℏ ( ω + i η ) + ξ k − ξ k + q ) e − β E ν \begin{aligned}
\chi_0
&= \frac{1}{Z V} \sum_{\vb{k}} \sum_{\nu \nu'} \bigg(
\frac{\matrixel{\nu}{\hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k} + \vb{q}}}{\nu'}
\matrixel{\nu'}{\hat{c}_{\vb{k} + \vb{q}}^\dagger \hat{c}_{\vb{k}}}{\nu}}
{\hbar (\omega + i \eta) + \xi_{\vb{k}} - \xi_{\vb{k} + \vb{q}}}
- \frac{\matrixel{\nu}{\hat{c}_{\vb{k} + \vb{q}}^\dagger \hat{c}_{\vb{k}}}{\nu'}
\matrixel{\nu'}{\hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k} + \vb{q}}}{\nu}}
{\hbar (\omega + i \eta) + \xi_{\vb{k}} - \xi_{\vb{k} + \vb{q}}} \bigg) e^{-\beta E_\nu}
\end{aligned} χ 0 = Z V 1 k ∑ ν ν ′ ∑ ( ℏ ( ω + i η ) + ξ k − ξ k + q ⟨ ν ∣ c ^ k † c ^ k + q ∣ ν ′ ⟩ ⟨ ν ′ ∣ c ^ k + q † c ^ k ∣ ν ⟩ − ℏ ( ω + i η ) + ξ k − ξ k + q ⟨ ν ∣ c ^ k + q † c ^ k ∣ ν ′ ⟩ ⟨ ν ′ ∣ c ^ k † c ^ k + q ∣ ν ⟩ ) e − β E ν
Notice that we have eliminated all dependence on ∣ ν ′ ⟩ \Ket{\nu'} ∣ ν ′ ⟩ ,
so we remove it by ∑ ν ∣ ν ⟩ ⟨ ν ∣ = 1 \sum_{\nu} \Ket{\nu} \Bra{\nu} = 1 ∑ ν ∣ ν ⟩ ⟨ ν ∣ = 1 :
χ 0 = 1 Z V ∑ k ∑ ν ( ⟨ ν ∣ c ^ k † c ^ k + q c ^ k + q † c ^ k ∣ ν ⟩ ℏ ( ω + i η ) + ξ k − ξ k + q − ⟨ ν ∣ c ^ k + q † c ^ k c ^ k † c ^ k + q ∣ ν ⟩ ℏ ( ω + i η ) + ξ k − ξ k + q ) e − β E ν = 1 Z V ∑ k ∑ ν ⟨ ν ∣ [ c ^ k † c ^ k + q , c ^ k + q † c ^ k ] e − β H ^ 0 ∣ ν ⟩ ℏ ( ω + i η ) + ξ k − ξ k + q \begin{aligned}
\chi_0
&= \frac{1}{Z V} \sum_{\vb{k}} \sum_{\nu} \bigg(
\frac{\matrixel{\nu}{\hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k} + \vb{q}} \hat{c}_{\vb{k} + \vb{q}}^\dagger \hat{c}_{\vb{k}}}{\nu}}
{\hbar (\omega + i \eta) + \xi_{\vb{k}} - \xi_{\vb{k} + \vb{q}}}
- \frac{\matrixel{\nu}{\hat{c}_{\vb{k} + \vb{q}}^\dagger \hat{c}_{\vb{k}} \hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k} + \vb{q}}}{\nu}}
{\hbar (\omega + i \eta) + \xi_{\vb{k}} - \xi_{\vb{k} + \vb{q}}} \bigg) e^{-\beta E_\nu}
\\
&= \frac{1}{Z V} \sum_{\vb{k}} \sum_{\nu}
\frac{\matrixel{\nu}{\comm{\hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k} + \vb{q}}}
{\hat{c}_{\vb{k} + \vb{q}}^\dagger \hat{c}_{\vb{k}}} \: e^{- \beta \hat{H}_0}}{\nu}}
{\hbar (\omega + i \eta) + \xi_{\vb{k}} - \xi_{\vb{k} + \vb{q}}}
\end{aligned} χ 0 = Z V 1 k ∑ ν ∑ ( ℏ ( ω + i η ) + ξ k − ξ k + q ⟨ ν ∣ c ^ k † c ^ k + q c ^ k + q † c ^ k ∣ ν ⟩ − ℏ ( ω + i η ) + ξ k − ξ k + q ⟨ ν ∣ c ^ k + q † c ^ k c ^ k † c ^ k + q ∣ ν ⟩ ) e − β E ν = Z V 1 k ∑ ν ∑ ℏ ( ω + i η ) + ξ k − ξ k + q ⟨ ν ∣ [ c ^ k † c ^ k + q , c ^ k + q † c ^ k ] e − β H ^ 0 ∣ ν ⟩
Where we recognized the commutator,
and eliminated E ν E_\nu E ν using H ^ 0 ∣ n ⟩ = E ν ∣ ν ⟩ \hat{H}_0 \Ket{n} = E_\nu \Ket{\nu} H ^ 0 ∣ n ⟩ = E ν ∣ ν ⟩ .
The resulting expression has the form of a matrix trace T r \Tr Tr
and a thermal expectation ⟨ ⟩ 0 \Expval{}_0 ⟨ ⟩ 0 :
χ 0 = 1 Z V ∑ k T r ( [ c ^ k † c ^ k + q , c ^ k + q † c ^ k ] e − β H ^ 0 ) ℏ ( ω + i η ) + ξ k − ξ k + q = 1 V ∑ k ⟨ [ c ^ k † c ^ k + q , c ^ k + q † c ^ k ] ⟩ 0 ℏ ( ω + i η ) + ξ k − ξ k + q \begin{aligned}
\chi_0
&= \frac{1}{Z V} \sum_{\vb{k}} \frac{\Tr\!\big(\comm{\hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k} + \vb{q}}}
{\hat{c}_{\vb{k} + \vb{q}}^\dagger \hat{c}_{\vb{k}}} \: e^{- \beta \hat{H}_0} \big)}
{\hbar (\omega + i \eta) + \xi_{\vb{k}} - \xi_{\vb{k} + \vb{q}}}
= \frac{1}{V} \sum_{\vb{k}}
\frac{\expval{\comm{\hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k} + \vb{q}}}{\hat{c}_{\vb{k} + \vb{q}}^\dagger \hat{c}_{\vb{k}}}}_0}
{\hbar (\omega + i \eta) + \xi_{\vb{k}} - \xi_{\vb{k} + \vb{q}}}
\end{aligned} χ 0 = Z V 1 k ∑ ℏ ( ω + i η ) + ξ k − ξ k + q Tr ( [ c ^ k † c ^ k + q , c ^ k + q † c ^ k ] e − β H ^ 0 ) = V 1 k ∑ ℏ ( ω + i η ) + ξ k − ξ k + q ⟨ [ c ^ k † c ^ k + q , c ^ k + q † c ^ k ] ⟩ 0
This commutator can be evaluated,
and in this particular case it turns out to be:
[ c ^ k † c ^ k + q , c ^ k + q † c ^ k ] = c ^ k † c ^ k − c ^ k + q † c ^ k + q \begin{aligned}
\comm{\hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k} + \vb{q}}}{\hat{c}_{\vb{k} + \vb{q}}^\dagger \hat{c}_{\vb{k}}}
= \hat{c}_{\vb{k}}^\dagger \hat{c}_{\vb{k}} - \hat{c}_{\vb{k} + \vb{q}}^\dagger \hat{c}_{\vb{k} + \vb{q}}
\end{aligned} [ c ^ k † c ^ k + q , c ^ k + q † c ^ k ] = c ^ k † c ^ k − c ^ k + q † c ^ k + q
Proof
Proof.
In general, for any single-particle states labeled by m m m , n n n , o o o and p p p , we have:
[ c ^ m † c ^ n , c ^ o † c ^ p ] = c ^ m † c ^ n c ^ o † c ^ p − c ^ o † c ^ p c ^ m † c ^ n = c ^ m † ( { c ^ n , c ^ o † } − c ^ o † c ^ n ) c ^ p − c ^ o † ( { c ^ p , c ^ m † } − c ^ m † c ^ p ) c ^ n \begin{aligned}
\comm{\hat{c}_m^\dagger \hat{c}_n}{\hat{c}_o^\dagger \hat{c}_p}
&= \hat{c}_m^\dagger \hat{c}_n \hat{c}_o^\dagger \hat{c}_p - \hat{c}_o^\dagger \hat{c}_p \hat{c}_m^\dagger \hat{c}_n
\\
&= \hat{c}_m^\dagger \big( \acomm{\hat{c}_n}{\hat{c}_o^\dagger} - \hat{c}_o^\dagger \hat{c}_n \big) \hat{c}_p
- \hat{c}_o^\dagger \big( \acomm{\hat{c}_p}{\hat{c}_m^\dagger} - \hat{c}_m^\dagger \hat{c}_p \big) \hat{c}_n
\end{aligned} [ c ^ m † c ^ n , c ^ o † c ^ p ] = c ^ m † c ^ n c ^ o † c ^ p − c ^ o † c ^ p c ^ m † c ^ n = c ^ m † ( { c ^ n , c ^ o † } − c ^ o † c ^ n ) c ^ p − c ^ o † ( { c ^ p , c ^ m † } − c ^ m † c ^ p ) c ^ n
Using the standard fermion anticommutation relations, this becomes:
[ c ^ m † c ^ n , c ^ o † c ^ p ] = c ^ m † ( δ n o − c ^ o † c ^ n ) c ^ p − c ^ o † ( δ p m − c ^ m † c ^ p ) c ^ n = c ^ m † c ^ p δ n o − c ^ m † c ^ o † c ^ n c ^ p − c ^ o † c ^ n δ p m + c ^ o † c ^ m † c ^ p c ^ n = c ^ m † c ^ p δ n o − c ^ o † c ^ n δ p m \begin{aligned}
\comm{\hat{c}_m^\dagger \hat{c}_n}{\hat{c}_o^\dagger \hat{c}_p}
&= \hat{c}_m^\dagger \big( \delta_{no} - \hat{c}_o^\dagger \hat{c}_n \big) \hat{c}_p
- \hat{c}_o^\dagger \big( \delta_{pm} - \hat{c}_m^\dagger \hat{c}_p \big) \hat{c}_n
\\
&= \hat{c}_m^\dagger \hat{c}_p \: \delta_{no} - \hat{c}_m^\dagger \hat{c}_o^\dagger \hat{c}_n \hat{c}_p
- \hat{c}_o^\dagger \hat{c}_n \: \delta_{pm} + \hat{c}_o^\dagger \hat{c}_m^\dagger \hat{c}_p \hat{c}_n
\\
&= \hat{c}_m^\dagger \hat{c}_p \: \delta_{no} - \hat{c}_o^\dagger \hat{c}_n \: \delta_{pm}
\end{aligned} [ c ^ m † c ^ n , c ^ o † c ^ p ] = c ^ m † ( δ n o − c ^ o † c ^ n ) c ^ p − c ^ o † ( δ p m − c ^ m † c ^ p ) c ^ n = c ^ m † c ^ p δ n o − c ^ m † c ^ o † c ^ n c ^ p − c ^ o † c ^ n δ p m + c ^ o † c ^ m † c ^ p c ^ n = c ^ m † c ^ p δ n o − c ^ o † c ^ n δ p m
In this case, m = p = k m = p = \vb{k} m = p = k and n = o = k + q n = o = \vb{k} \!+\! \vb{q} n = o = k + q ,
so the Kronecker deltas are unnecessary.
We substitute this result into χ 0 \chi_0 χ 0 ,
and reintroduce the spin index σ \sigma σ associated with k \vb{k} k :
χ 0 ( q , ω ) = 1 V ∑ σ k ⟨ c ^ σ , k † c ^ σ , k − c ^ σ , k + q † c ^ σ , k + q ⟩ 0 ℏ ( ω + i η ) + ξ k − ξ k + q \begin{aligned}
\chi_0(\vb{q}, \omega)
= \frac{1}{V} \sum_{\sigma \vb{k}}
\frac{\expval{\hat{c}_{\sigma,\vb{k}}^\dagger \hat{c}_{\sigma,\vb{k}} - \hat{c}_{\sigma,\vb{k}+\vb{q}}^\dagger \hat{c}_{\sigma,\vb{k}+\vb{q}}}_0}
{\hbar (\omega + i \eta) + \xi_{\vb{k}} - \xi_{\vb{k} + \vb{q}}}
\end{aligned} χ 0 ( q , ω ) = V 1 σ k ∑ ℏ ( ω + i η ) + ξ k − ξ k + q ⟨ c ^ σ , k † c ^ σ , k − c ^ σ , k + q † c ^ σ , k + q ⟩ 0
The operator c ^ σ . k † c ^ σ . k \hat{c}_{\sigma.\vb{k}}^\dagger \hat{c}_{\sigma.\vb{k}} c ^ σ . k † c ^ σ . k
simply counts the number of electrons in state ( σ , k ) (\sigma, \vb{k}) ( σ , k ) ,
which is given by the Fermi-Dirac distribution n F n_F n F .
This gives us the Lindhard response function :
χ 0 ( q , ω ) = 1 V ∑ σ k n F ( ξ k ) − n F ( ξ k + q ) ℏ ( ω + i η ) + ξ k − ξ k + q \begin{aligned}
\boxed{
\chi_0(\vb{q}, \omega)
= \frac{1}{V} \sum_{\sigma \vb{k}}
\frac{n_F(\xi_{\vb{k}}) - n_F(\xi_{\vb{k} + \vb{q}})}
{\hbar (\omega + i \eta) + \xi_{\vb{k}} - \xi_{\vb{k} + \vb{q}}}
}
\end{aligned} χ 0 ( q , ω ) = V 1 σ k ∑ ℏ ( ω + i η ) + ξ k − ξ k + q n F ( ξ k ) − n F ( ξ k + q )
From this, we would like to get the
dielectric function ε r \varepsilon_r ε r .
Recall its definition, where U t o t U_\mathrm{tot} U tot , U e x t U_\mathrm{ext} U ext , and U i n d U_\mathrm{ind} U ind
are the total, external and induced potentials, respectively:
U t o t = U e x t + U i n d = U e x t ε r \begin{aligned}
U_\mathrm{tot}
= U_\mathrm{ext} + U_\mathrm{ind}
= \frac{U_\mathrm{ext}}{\varepsilon_r}
\end{aligned} U tot = U ext + U ind = ε r U ext
Note that these are all energy potentials:
this choice is justified because all energy potentials
are caused by electric fields in this case.
The electric potential is recoverable as
Φ t o t = q e U t o t \Phi_\mathrm{tot} = q_e U_\mathrm{tot} Φ tot = q e U tot ,
where q e < 0 q_e < 0 q e < 0 is the charge of an electron.
From the Lindhard response function χ 0 \chi_0 χ 0 ,
we get the induced particle density offset δ ⟨ n ^ ⟩ \delta{\Expval{\hat{n}}} δ ⟨ n ^ ⟩
caused by a potential U U U .
The density δ ⟨ n ^ ⟩ \delta{\Expval{\hat{n}}} δ ⟨ n ^ ⟩ should be self-consistent,
implying U = U t o t U = U_\mathrm{tot} U = U tot .
In other words, we have a linear relation
δ ⟨ n ^ ⟩ = χ 0 U t o t \delta{\Expval{\hat{n}}} = \chi_0 U_\mathrm{tot} δ ⟨ n ^ ⟩ = χ 0 U tot ,
so the standard formula for ε r \varepsilon_r ε r gives:
ε r ( q , ω ) = 1 − U e e ( q ) V ∑ σ k n F ( ξ k ) − n F ( ξ k + q ) ℏ ( ω + i η ) + ξ k − ξ k + q \begin{aligned}
\boxed{
\varepsilon_r(\vb{q}, \omega)
= 1 - \frac{U_{ee}(\vb{q})}{V}
\sum_{\sigma \vb{k}} \frac{n_F(\xi_{\vb{k}}) - n_F(\xi_{\vb{k} + \vb{q}})}{\hbar (\omega + i \eta) + \xi_{\vb{k}} - \xi_{\vb{k} + \vb{q}}}
}
\end{aligned} ε r ( q , ω ) = 1 − V U ee ( q ) σ k ∑ ℏ ( ω + i η ) + ξ k − ξ k + q n F ( ξ k ) − n F ( ξ k + q )
Where U e e ( q ) = q e 2 / ( ε 0 ∣ q ∣ 2 ) U_{ee}(\vb{q}) = q_e^2 / (\varepsilon_0 |\vb{q}|^2) U ee ( q ) = q e 2 / ( ε 0 ∣ q ∣ 2 )
is Coulomb repulsion.
This is the Lindhard dielectric function of a free
non-interacting electron gas,
at any temperature and for any dimensionality.
References
K.S. Thygesen,
Advanced solid state physics: linear response theory ,
2013, unpublished.
H. Bruus, K. Flensberg,
Many-body quantum theory in condensed matter physics ,
2016, Oxford.
G. Grosso, G.P. Parravicini,
Solid state physics ,
2nd edition, Elsevier.