Categories:
Physics ,
Quantum mechanics .
Matsubara Green’s function
The Matsubara Green’s function is an
imaginary-time version
of the real-time Green’s functions .
We define it as follows in the imaginary-time
Heisenberg picture :
C A B ( τ , τ ′ ) ≡ − 1 ℏ ⟨ T { A ^ ( τ ) B ^ ( τ ′ ) } ⟩ \begin{aligned}
\boxed{
C_{AB}(\tau, \tau')
\equiv -\frac{1}{\hbar} \Expval{\mathcal{T} \big\{ \hat{A}(\tau) \hat{B}(\tau') \big\}}
}
\end{aligned} C A B ( τ , τ ′ ) ≡ − ℏ 1 ⟨ T { A ^ ( τ ) B ^ ( τ ′ ) } ⟩
Where the expectation value ⟨ ⟩ \Expval{} ⟨ ⟩ is with respect to thermodynamic equilibrium,
and T \mathcal{T} T is the time-ordered product pseudo-operator.
Because the Hamiltonian H ^ \hat{H} H ^ cannot depend on the imaginary time,
C A B C_{AB} C A B is a function of the difference τ − τ ′ \tau \!-\! \tau' τ − τ ′ only:
C A B ( τ , τ ′ ) = − 1 ℏ Z T r ( e − β H ^ A ^ ( τ ) B ^ ( τ ′ ) ) = − 1 ℏ Z T r ( e − β H ^ e τ H ^ / ℏ A ^ e − τ H ^ / ℏ e τ ′ H ^ / ℏ B ^ e − τ ′ H ^ / ℏ ) = − 1 ℏ Z T r ( e − β H ^ e ( τ − τ ′ ) H ^ / ℏ A ^ e − ( τ − τ ′ ) H ^ / ℏ B ^ ) \begin{aligned}
C_{AB}(\tau, \tau')
&= - \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} \hat{A}(\tau) \hat{B}(\tau') \Big)
\\
&= - \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} e^{\tau \hat{H} / \hbar} \hat{A} e^{-\tau \hat{H} / \hbar}
e^{\tau' \hat{H} / \hbar} \hat{B} e^{-\tau' \hat{H} / \hbar} \Big)
\\
&= - \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} e^{(\tau - \tau') \hat{H} / \hbar} \hat{A} e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B} \Big)
\end{aligned} C A B ( τ , τ ′ ) = − ℏ Z 1 Tr ( e − β H ^ A ^ ( τ ) B ^ ( τ ′ ) ) = − ℏ Z 1 Tr ( e − β H ^ e τ H ^ /ℏ A ^ e − τ H ^ /ℏ e τ ′ H ^ /ℏ B ^ e − τ ′ H ^ /ℏ ) = − ℏ Z 1 Tr ( e − β H ^ e ( τ − τ ′ ) H ^ /ℏ A ^ e − ( τ − τ ′ ) H ^ /ℏ B ^ )
For τ > τ ′ \tau > \tau' τ > τ ′ , we see by expanding in the many-particle eigenstates ∣ n ⟩ \Ket{n} ∣ n ⟩
that we need to demand ℏ β > τ − τ ′ \hbar \beta > \tau \!-\! \tau' ℏ β > τ − τ ′ to prevent
C A B C_{AB} C A B from diverging for increasing temperatures:
C A B ( τ − τ ′ ) = − 1 ℏ Z ∑ n ⟨ n | e − β H ^ e ( τ − τ ′ ) H ^ / ℏ A ^ e − ( τ − τ ′ ) H ^ / ℏ B ^ | n ⟩ = − 1 ℏ Z ∑ n ⟨ n | A ^ e − ( τ − τ ′ ) H ^ / ℏ B ^ | n ⟩ e − β E n e ( τ − τ ′ ) E n / ℏ \begin{aligned}
C_{AB}(\tau \!-\! \tau')
&= - \frac{1}{\hbar Z} \sum_{n} \Matrixel{n}{e^{-\beta \hat{H}} e^{(\tau - \tau') \hat{H} / \hbar}
\hat{A} e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B}}{n}
\\
&= - \frac{1}{\hbar Z} \sum_{n} \Matrixel{n}{\hat{A} e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B}}{n} e^{-\beta E_n} e^{(\tau - \tau') E_n / \hbar}
\end{aligned} C A B ( τ − τ ′ ) = − ℏ Z 1 n ∑ ⟨ n e − β H ^ e ( τ − τ ′ ) H ^ /ℏ A ^ e − ( τ − τ ′ ) H ^ /ℏ B ^ n ⟩ = − ℏ Z 1 n ∑ ⟨ n A ^ e − ( τ − τ ′ ) H ^ /ℏ B ^ n ⟩ e − β E n e ( τ − τ ′ ) E n /ℏ
And likewise, for τ < τ ′ \tau < \tau' τ < τ ′ ,
we must demand that τ − τ ′ > − ℏ β \tau \!-\! \tau' > -\hbar \beta τ − τ ′ > − ℏ β
for the same reason:
C A B ( τ − τ ′ ) = ∓ 1 ℏ Z T r ( e − β H ^ B ^ ( τ ′ ) A ^ ( τ ) ) = ∓ 1 ℏ Z T r ( e − β H ^ e − ( τ − τ ′ ) H ^ / ℏ B ^ e ( τ − τ ′ ) H ^ / ℏ A ^ ) = ∓ 1 ℏ Z ∑ n ⟨ n | B ^ e ( τ − τ ′ ) H ^ / ℏ A ^ | n ⟩ e − β E n e − ( τ − τ ′ ) E n / ℏ \begin{aligned}
C_{AB}(\tau \!-\! \tau')
&= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} \hat{B}(\tau') \hat{A}(\tau) \Big)
\\
&= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B} e^{(\tau - \tau') \hat{H} / \hbar} \hat{A} \Big)
\\
&= \mp \frac{1}{\hbar Z} \sum_{n} \Matrixel{n}{\hat{B} e^{(\tau - \tau') \hat{H} / \hbar} \hat{A}}{n} e^{-\beta E_n} e^{- (\tau - \tau') E_n / \hbar}
\end{aligned} C A B ( τ − τ ′ ) = ∓ ℏ Z 1 Tr ( e − β H ^ B ^ ( τ ′ ) A ^ ( τ ) ) = ∓ ℏ Z 1 Tr ( e − β H ^ e − ( τ − τ ′ ) H ^ /ℏ B ^ e ( τ − τ ′ ) H ^ /ℏ A ^ ) = ∓ ℏ Z 1 n ∑ ⟨ n B ^ e ( τ − τ ′ ) H ^ /ℏ A ^ n ⟩ e − β E n e − ( τ − τ ′ ) E n /ℏ
With − - − for bosons, and + + + for fermions,
due to the time-ordered product for τ > τ ′ \tau > \tau' τ > τ ′ .
On this domain [ − ℏ β , ℏ β ] [-\hbar \beta, \hbar \beta] [ − ℏ β , ℏ β ] ,
the Matsubara Green’s function C A B C_{AB} C A B
obeys a useful shift relation:
it is ℏ β \hbar \beta ℏ β -periodic for bosons,
and ℏ β \hbar \beta ℏ β -antiperiodic for fermions:
C A B ( τ − τ ′ ) = { ± C A B ( τ − τ ′ + ℏ β ) i f τ − τ ′ < 0 ± C A B ( τ − τ ′ − ℏ β ) i f τ − τ ′ > 0 \begin{aligned}
\boxed{
C_{AB}(\tau \!-\! \tau') =
\begin{cases}
\pm C_{AB}(\tau \!-\! \tau' \!+\! \hbar \beta)
& \mathrm{if\;} \tau \!-\! \tau' < 0
\\
\pm C_{AB}(\tau \!-\! \tau' \!-\! \hbar \beta)
& \mathrm{if\;} \tau \!-\! \tau' > 0
\end{cases}
}
\end{aligned} C A B ( τ − τ ′ ) = { ± C A B ( τ − τ ′ + ℏ β ) ± C A B ( τ − τ ′ − ℏ β ) if τ − τ ′ < 0 if τ − τ ′ > 0
Proof
Proof.
First τ − τ ′ < 0 \tau \!-\! \tau' < 0 τ − τ ′ < 0 .
We insert the argument τ − τ ′ + ℏ β \tau \!-\! \tau' \!+\! \hbar \beta τ − τ ′ + ℏ β ,
and use the cyclic property:
C A B ( τ − τ ′ + ℏ β ) = − 1 ℏ Z T r ( e − β H ^ e ( τ − τ ′ + ℏ β ) H ^ / ℏ A ^ e − ( τ − τ ′ + ℏ β ) H ^ / ℏ B ^ ) = − 1 ℏ Z T r ( e ( τ − τ ′ ) H ^ / ℏ A ^ e − ( τ − τ ′ ) H ^ / ℏ e − β H ^ B ^ ) = − 1 ℏ Z T r ( e − β H ^ e τ ′ H ^ / ℏ B ^ e − τ ′ H ^ / ℏ e τ H ^ / ℏ A ^ e − τ H ^ / ℏ ) = − 1 ℏ Z T r ( e − β H ^ B ^ ( τ ′ ) A ^ ( τ ) ) \begin{aligned}
C_{AB}(\tau \!-\! \tau' \!+\! \hbar \beta)
&= - \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} e^{(\tau - \tau' + \hbar \beta) \hat{H} / \hbar}
\hat{A} e^{-(\tau - \tau' + \hbar \beta) \hat{H} / \hbar} \hat{B} \Big)
\\
&= - \frac{1}{\hbar Z} \Tr\!\Big( e^{(\tau - \tau') \hat{H} / \hbar} \hat{A} e^{-(\tau - \tau') \hat{H} / \hbar} e^{-\beta \hat{H}} \hat{B} \Big)
\\
&= - \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} e^{\tau' \hat{H} / \hbar} \hat{B} e^{-\tau' \hat{H} / \hbar}
e^{\tau \hat{H} / \hbar} \hat{A} e^{-\tau \hat{H} / \hbar} \Big)
\\
&= - \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} \hat{B}(\tau') \hat{A}(\tau) \Big)
\end{aligned} C A B ( τ − τ ′ + ℏ β ) = − ℏ Z 1 Tr ( e − β H ^ e ( τ − τ ′ + ℏ β ) H ^ /ℏ A ^ e − ( τ − τ ′ + ℏ β ) H ^ /ℏ B ^ ) = − ℏ Z 1 Tr ( e ( τ − τ ′ ) H ^ /ℏ A ^ e − ( τ − τ ′ ) H ^ /ℏ e − β H ^ B ^ ) = − ℏ Z 1 Tr ( e − β H ^ e τ ′ H ^ /ℏ B ^ e − τ ′ H ^ /ℏ e τ H ^ /ℏ A ^ e − τ H ^ /ℏ ) = − ℏ Z 1 Tr ( e − β H ^ B ^ ( τ ′ ) A ^ ( τ ) )
Since τ < τ ′ \tau < \tau' τ < τ ′ by assumption,
we can bring back the time-ordered product T \mathcal{T} T :
C A B ( τ − τ ′ + ℏ β ) = ∓ 1 ℏ Z T r ( e − β H ^ T { A ^ ( τ ) B ^ ( τ ′ ) } ) = ± C A B ( τ − τ ′ ) \begin{aligned}
C_{AB}(\tau \!-\! \tau' \!+\! \hbar \beta)
&= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} \mathcal{T}\big\{ \hat{A}(\tau) \hat{B}(\tau') \big\} \Big)
\\
&= \pm C_{AB}(\tau \!-\! \tau')
\end{aligned} C A B ( τ − τ ′ + ℏ β ) = ∓ ℏ Z 1 Tr ( e − β H ^ T { A ^ ( τ ) B ^ ( τ ′ ) } ) = ± C A B ( τ − τ ′ )
Moving on to τ − τ ′ > 0 \tau \!-\! \tau' > 0 τ − τ ′ > 0 , the proof is perfectly analogous:
C A B ( τ − τ ′ − ℏ β ) = ∓ 1 ℏ Z T r ( e − β H ^ e − ( τ − τ ′ − ℏ β ) H ^ / ℏ B ^ e ( τ − τ ′ − ℏ β ) H ^ / ℏ A ^ ) = ∓ 1 ℏ Z T r ( e − ( τ − τ ′ ) H ^ / ℏ B ^ e ( τ − τ ′ ) H ^ / ℏ e − β H ^ A ^ ) = ∓ 1 ℏ Z T r ( e − β H ^ e τ H ^ / ℏ A ^ e − τ H ^ / ℏ e τ ′ H ^ / ℏ B ^ e − τ ′ H ^ / ℏ ) = ∓ 1 ℏ Z T r ( e − β H ^ A ^ ( τ ) B ^ ( τ ′ ) ) = ∓ 1 ℏ Z T r ( e − β H ^ T { A ^ ( τ ) B ^ ( τ ′ ) } ) = ± C A B ( τ − τ ′ ) \begin{aligned}
C_{AB}(\tau \!-\! \tau' \!-\! \hbar \beta)
&= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} e^{-(\tau - \tau' - \hbar \beta) \hat{H} / \hbar}
\hat{B} e^{(\tau - \tau' - \hbar \beta) \hat{H} / \hbar} \hat{A} \Big)
\\
&= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B} e^{(\tau - \tau') \hat{H} / \hbar} e^{-\beta \hat{H}} \hat{A} \Big)
\\
&= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} e^{\tau \hat{H} / \hbar} \hat{A} e^{-\tau \hat{H} / \hbar}
e^{\tau' \hat{H} / \hbar} \hat{B} e^{-\tau' \hat{H} / \hbar} \Big)
\\
&= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} \hat{A}(\tau) \hat{B}(\tau') \Big)
\\
&= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} \mathcal{T}\big\{ \hat{A}(\tau) \hat{B}(\tau') \big\} \Big)
\\
&= \pm C_{AB}(\tau \!-\! \tau')
\end{aligned} C A B ( τ − τ ′ − ℏ β ) = ∓ ℏ Z 1 Tr ( e − β H ^ e − ( τ − τ ′ − ℏ β ) H ^ /ℏ B ^ e ( τ − τ ′ − ℏ β ) H ^ /ℏ A ^ ) = ∓ ℏ Z 1 Tr ( e − ( τ − τ ′ ) H ^ /ℏ B ^ e ( τ − τ ′ ) H ^ /ℏ e − β H ^ A ^ ) = ∓ ℏ Z 1 Tr ( e − β H ^ e τ H ^ /ℏ A ^ e − τ H ^ /ℏ e τ ′ H ^ /ℏ B ^ e − τ ′ H ^ /ℏ ) = ∓ ℏ Z 1 Tr ( e − β H ^ A ^ ( τ ) B ^ ( τ ′ ) ) = ∓ ℏ Z 1 Tr ( e − β H ^ T { A ^ ( τ ) B ^ ( τ ′ ) } ) = ± C A B ( τ − τ ′ )
Due to this limited domain τ ∈ [ − ℏ β , ℏ β ] \tau \in [-\hbar \beta, \hbar \beta] τ ∈ [ − ℏ β , ℏ β ] ,
the Fourier transform
of C A B ( τ ) C_{AB}(\tau) C A B ( τ ) consists of discrete frequencies
k n ≡ n π / ( ℏ β ) k_n \equiv n \pi / (\hbar \beta) k n ≡ nπ / ( ℏ β ) .
The forward and inverse Fourier transforms
are therefore defined as given below (with τ ′ = 0 \tau' = 0 τ ′ = 0 ).
It is convention to write C A B ( i k n ) C_{AB}(i k_n) C A B ( i k n ) instead of C A B ( k n ) C_{AB}(k_n) C A B ( k n ) :
C A B ( i k n ) ≡ 1 2 ∫ − ℏ β ℏ β C A B ( τ ) e i k n τ d τ C A B ( τ ) = 1 ℏ β ∑ n = − ∞ ∞ C A B ( i k n ) e − i k n τ \begin{aligned}
\boxed{
\begin{aligned}
C_{AB}(i k_n)
&\equiv \frac{1}{2} \int_{-\hbar \beta}^{\hbar \beta} C_{AB}(\tau) \: e^{i k_n \tau} \dd{\tau}
\\
C_{AB}(\tau)
&= \frac{1}{\hbar \beta} \sum_{n = -\infty}^\infty C_{AB}(i k_n) e^{-i k_n \tau}
\end{aligned}
}
\end{aligned} C A B ( i k n ) C A B ( τ ) ≡ 2 1 ∫ − ℏ β ℏ β C A B ( τ ) e i k n τ d τ = ℏ β 1 n = − ∞ ∑ ∞ C A B ( i k n ) e − i k n τ
Proof
Proof.
We will prove that one is indeed the inverse of the other.
We demand that the inverse FT of the forward FT of C A B ( τ ) C_{AB}(\tau) C A B ( τ )
is simply C A B ( τ ) C_{AB}(\tau) C A B ( τ ) again:
C A B ( τ ) = 1 ℏ β ∑ n = − ∞ ∞ ( 1 2 ∫ − ℏ β ℏ β C A B ( τ ′ ) e i k n τ ′ d τ ′ ) e − i k n τ = 1 ℏ β ∫ − ℏ β ℏ β C A B ( τ ′ ) ( 1 2 ∑ n = − ∞ ∞ e i k n ( τ ′ − τ ) ) d τ ′ = π ℏ β ∫ − ℏ β ℏ β C A B ( τ ′ ) ( 1 2 π ∑ n = − ∞ ∞ e i π n ( τ ′ − τ ) / ℏ β ) d τ ′ \begin{aligned}
C_{AB}(\tau)
&= \frac{1}{\hbar \beta} \sum_{n = -\infty}^\infty
\bigg( \frac{1}{2} \int_{-\hbar \beta}^{\hbar \beta} C_{AB}(\tau') \: e^{i k_n \tau'} \dd{\tau'} \bigg) e^{-i k_n \tau}
\\
&= \frac{1}{\hbar \beta} \int_{-\hbar \beta}^{\hbar \beta} C_{AB}(\tau')
\bigg( \frac{1}{2} \sum_{n = -\infty}^\infty e^{i k_n (\tau' - \tau)} \bigg) \dd{\tau'}
\\
&= \frac{\pi}{\hbar \beta} \int_{-\hbar \beta}^{\hbar \beta} C_{AB}(\tau')
\bigg( \frac{1}{2 \pi} \sum_{n = -\infty}^\infty e^{i \pi n (\tau' - \tau) / \hbar \beta} \bigg) \dd{\tau'}
\end{aligned} C A B ( τ ) = ℏ β 1 n = − ∞ ∑ ∞ ( 2 1 ∫ − ℏ β ℏ β C A B ( τ ′ ) e i k n τ ′ d τ ′ ) e − i k n τ = ℏ β 1 ∫ − ℏ β ℏ β C A B ( τ ′ ) ( 2 1 n = − ∞ ∑ ∞ e i k n ( τ ′ − τ ) ) d τ ′ = ℏ β π ∫ − ℏ β ℏ β C A B ( τ ′ ) ( 2 π 1 n = − ∞ ∑ ∞ e iπn ( τ ′ − τ ) /ℏ β ) d τ ′
Here, the inner expression turns out to be
a Dirac delta function :
1 2 π ∑ n = − ∞ ∞ e i n x = δ ( x ) \begin{aligned}
\frac{1}{2 \pi} \sum_{n = -\infty}^\infty e^{i n x}
= \delta(x)
\end{aligned} 2 π 1 n = − ∞ ∑ ∞ e in x = δ ( x )
From which the rest of the proof follows straightforwardly:
C A B ( τ ) = π ℏ β ∫ − ℏ β ℏ β C A B ( τ ′ ) δ ( ( τ ′ − τ ) π / ℏ β ) d τ ′ = π ℏ β π ℏ β ∫ − ℏ β ℏ β C A B ( τ ′ ) δ ( τ ′ − τ ) d τ ′ = ∫ − ℏ β ℏ β C A B ( τ ′ ) δ ( τ ′ − τ ) d τ ′ = C A B ( τ ) \begin{aligned}
C_{AB}(\tau)
&= \frac{\pi}{\hbar \beta} \int_{-\hbar \beta}^{\hbar \beta} C_{AB}(\tau') \: \delta\big( (\tau' \!-\! \tau) \pi / \hbar \beta \big) \dd{\tau'}
\\
&= \frac{\pi \hbar \beta}{\pi \hbar \beta} \int_{-\hbar \beta}^{\hbar \beta} C_{AB}(\tau') \: \delta(\tau' \!-\! \tau) \dd{\tau'}
\\
&= \int_{-\hbar \beta}^{\hbar \beta} C_{AB}(\tau') \: \delta(\tau' \!-\! \tau) \dd{\tau'}
\\
&= C_{AB}(\tau)
\end{aligned} C A B ( τ ) = ℏ β π ∫ − ℏ β ℏ β C A B ( τ ′ ) δ ( ( τ ′ − τ ) π /ℏ β ) d τ ′ = π ℏ β π ℏ β ∫ − ℏ β ℏ β C A B ( τ ′ ) δ ( τ ′ − τ ) d τ ′ = ∫ − ℏ β ℏ β C A B ( τ ′ ) δ ( τ ′ − τ ) d τ ′ = C A B ( τ )
Let us now define the Matsubara frequencies ω n \omega_n ω n
as a species-dependent subset of k n k_n k n :
ω n ≡ { 2 n π ℏ β b o s o n s ( 2 n + 1 ) π ℏ β f e r m i o n s \begin{aligned}
\boxed{
\omega_n \equiv
\begin{cases}
\displaystyle\frac{2 n \pi}{\hbar \beta}
& \mathrm{bosons}
\\
\displaystyle\frac{(2 n + 1) \pi}{\hbar \beta}
& \mathrm{fermions}
\end{cases}
}
\end{aligned} ω n ≡ ⎩ ⎨ ⎧ ℏ β 2 nπ ℏ β ( 2 n + 1 ) π bosons fermions
With this, we can rewrite the definition of the forward Fourier transform as follows:
C A B ( i ω n ) = ∫ 0 ℏ β C A B ( τ ) e i ω n τ d τ = ∫ − ℏ β 0 C A B ( τ ) e i ω n τ d τ \begin{aligned}
\boxed{
C_{AB}(i \omega_n)
= \int_0^{\hbar \beta} C_{AB}(\tau) \: e^{i \omega_n \tau} \dd{\tau}
= \int_{-\hbar \beta}^0 C_{AB}(\tau) \: e^{i \omega_n \tau} \dd{\tau}
}
\end{aligned} C A B ( i ω n ) = ∫ 0 ℏ β C A B ( τ ) e i ω n τ d τ = ∫ − ℏ β 0 C A B ( τ ) e i ω n τ d τ
Proof
Proof.
We split the integral, shift its limits,
and use the (anti)periodicity of C A B C_{AB} C A B :
C A B ( i k n ) = 1 2 ∫ 0 ℏ β C A B ( τ ) e i k n τ d τ + 1 2 ∫ − ℏ β 0 C A B ( τ ) e i k n τ d τ = 1 2 ∫ 0 ℏ β C A B ( τ ) e i k n τ d τ + 1 2 ∫ 0 ℏ β C A B ( τ − ℏ β ) e i k n ( τ − ℏ β ) d τ = 1 2 ∫ 0 ℏ β ( C A B ( τ ) ± C A B ( τ ) e − i k n ℏ β ) e i k n τ d τ = 1 2 ( 1 ± e − i k n ℏ β ) ∫ 0 ℏ β C A B ( τ ) e i k n τ d τ \begin{aligned}
C_{AB}(i k_n)
&= \frac{1}{2} \int_0^{\hbar \beta} C_{AB}(\tau) \: e^{i k_n \tau} \dd{\tau}
+ \frac{1}{2} \int_{-\hbar \beta}^0 C_{AB}(\tau) \: e^{i k_n \tau} \dd{\tau}
\\
&= \frac{1}{2} \int_0^{\hbar \beta} C_{AB}(\tau) \: e^{i k_n \tau} \dd{\tau}
+ \frac{1}{2} \int_0^{\hbar \beta} C_{AB}(\tau \!-\! \hbar \beta) \: e^{i k_n (\tau - \hbar \beta)} \dd{\tau}
\\
&= \frac{1}{2} \int_0^{\hbar \beta} \Big( C_{AB}(\tau) \pm C_{AB}(\tau) \: e^{-i k_n \hbar \beta} \Big) \: e^{i k_n \tau} \dd{\tau}
\\
&= \frac{1}{2} \big( 1 \pm e^{-i k_n \hbar \beta} \big) \int_0^{\hbar \beta} C_{AB}(\tau) \: e^{i k_n \tau} \dd{\tau}
\end{aligned} C A B ( i k n ) = 2 1 ∫ 0 ℏ β C A B ( τ ) e i k n τ d τ + 2 1 ∫ − ℏ β 0 C A B ( τ ) e i k n τ d τ = 2 1 ∫ 0 ℏ β C A B ( τ ) e i k n τ d τ + 2 1 ∫ 0 ℏ β C A B ( τ − ℏ β ) e i k n ( τ − ℏ β ) d τ = 2 1 ∫ 0 ℏ β ( C A B ( τ ) ± C A B ( τ ) e − i k n ℏ β ) e i k n τ d τ = 2 1 ( 1 ± e − i k n ℏ β ) ∫ 0 ℏ β C A B ( τ ) e i k n τ d τ
With + + + for bosons, and − - − for fermions. Since k n ≡ n π / ( ℏ β ) k_n \equiv n \pi / (\hbar \beta) k n ≡ nπ / ( ℏ β ) ,
we know e − i k n ℏ β ∈ { − 1 , 1 } e^{-i k_n \hbar \beta} \in \{-1, 1\} e − i k n ℏ β ∈ { − 1 , 1 } ,
so for bosons all odd n n n vanish, and for fermions all even n n n ,
yielding the desired result.
For the other case, we simply shift the first integral’s limits instead of the seconds’:
C A B ( i k n ) = 1 2 ∫ − ℏ β 0 C A B ( τ + ℏ β ) e i k n ( τ + ℏ β ) d τ + 1 2 ∫ 0 ℏ β C A B ( τ ) e i k n τ d τ = 1 2 ∫ − ℏ β 0 ( C A B ( τ ) ± C A B ( τ ) e i k n ℏ β ) e i k n τ d τ = 1 2 ( 1 ± e − i k n ℏ β ) ∫ − ℏ β 0 C A B ( τ ) e i k n τ d τ \begin{aligned}
C_{AB}(i k_n)
&= \frac{1}{2} \int_{-\hbar \beta}^0 C_{AB}(\tau \!+\! \hbar \beta) \: e^{i k_n (\tau + \hbar \beta)} \dd{\tau}
+ \frac{1}{2} \int_0^{\hbar \beta} C_{AB}(\tau) \: e^{i k_n \tau} \dd{\tau}
\\
&= \frac{1}{2} \int_{-\hbar \beta}^0 \Big( C_{AB}(\tau) \pm C_{AB}(\tau) \: e^{i k_n \hbar \beta} \Big) \: e^{i k_n \tau} \dd{\tau}
\\
&= \frac{1}{2} \big( 1 \pm e^{-i k_n \hbar \beta} \big) \int_{-\hbar \beta}^0 C_{AB}(\tau) \: e^{i k_n \tau} \dd{\tau}
\end{aligned} C A B ( i k n ) = 2 1 ∫ − ℏ β 0 C A B ( τ + ℏ β ) e i k n ( τ + ℏ β ) d τ + 2 1 ∫ 0 ℏ β C A B ( τ ) e i k n τ d τ = 2 1 ∫ − ℏ β 0 ( C A B ( τ ) ± C A B ( τ ) e i k n ℏ β ) e i k n τ d τ = 2 1 ( 1 ± e − i k n ℏ β ) ∫ − ℏ β 0 C A B ( τ ) e i k n τ d τ
If we actually evaluate this,
we obtain the following form of C A B C_{AB} C A B ,
which is almost identical to the
Lehmann representation
of the “ordinary” retarded and advanced Green’s functions:
C A B ( i ω m ) = 1 Z ∑ n n ′ ⟨ n ∣ A ^ ∣ n ′ ⟩ ⟨ n ′ ∣ B ^ ∣ n ⟩ i ℏ ω m + E n − E n ′ ( e − β E n ∓ e − β E n ′ ) \begin{aligned}
\boxed{
C_{AB}(i \omega_m)
= \frac{1}{Z} \sum_{n n'} \frac{\matrixel{n}{\hat{A}}{n'} \matrixel{n'}{\hat{B}}{n}}{i \hbar \omega_m + E_n - E_{n'}}
\Big( e^{-\beta E_n} \mp e^{- \beta E_{n'}} \Big)
}
\end{aligned} C A B ( i ω m ) = Z 1 n n ′ ∑ i ℏ ω m + E n − E n ′ ⟨ n ∣ A ^ ∣ n ′ ⟩ ⟨ n ′ ∣ B ^ ∣ n ⟩ ( e − β E n ∓ e − β E n ′ )
Proof
Proof.
For τ − τ ′ > 0 \tau \!-\! \tau' > 0 τ − τ ′ > 0 , we start by expanding
in the many-particle eigenstates ∣ n ⟩ \Ket{n} ∣ n ⟩ :
C A B ( τ − τ ′ ) = − 1 ℏ Z ∑ n ⟨ n | e − β H ^ e ( τ − τ ′ ) H ^ / ℏ A ^ e − ( τ − τ ′ ) H ^ / ℏ B ^ | n ⟩ = − 1 ℏ Z ∑ n n ′ ⟨ n | e − β H ^ e ( τ − τ ′ ) H ^ / ℏ A ^ | n ′ ⟩ ⟨ n ′ | e − ( τ − τ ′ ) H ^ / ℏ B ^ | n ⟩ = − 1 ℏ Z ∑ n n ′ e − β E n ⟨ n ∣ A ^ ∣ n ′ ⟩ ⟨ n ′ ∣ B ^ ∣ n ⟩ e ( E n − E n ′ ) ( τ − τ ′ ) / ℏ \begin{aligned}
C_{AB}(\tau \!-\! \tau')
&= - \frac{1}{\hbar Z} \sum_{n}
\Matrixel{n}{e^{-\beta \hat{H}} e^{(\tau - \tau') \hat{H} / \hbar} \hat{A} e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B}}{n}
\\
&= - \frac{1}{\hbar Z} \sum_{n n'} \Matrixel{n}{e^{-\beta \hat{H}} e^{(\tau - \tau') \hat{H} / \hbar} \hat{A}}{n'}
\Matrixel{n'}{e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B}}{n}
\\
&= - \frac{1}{\hbar Z} \sum_{n n'} e^{-\beta E_n} \matrixel{n}{\hat{A}}{n'}
\matrixel{n'}{\hat{B}}{n} e^{(E_n - E_{n'})(\tau - \tau') / \hbar}
\end{aligned} C A B ( τ − τ ′ ) = − ℏ Z 1 n ∑ ⟨ n e − β H ^ e ( τ − τ ′ ) H ^ /ℏ A ^ e − ( τ − τ ′ ) H ^ /ℏ B ^ n ⟩ = − ℏ Z 1 n n ′ ∑ ⟨ n e − β H ^ e ( τ − τ ′ ) H ^ /ℏ A ^ n ′ ⟩ ⟨ n ′ e − ( τ − τ ′ ) H ^ /ℏ B ^ n ⟩ = − ℏ Z 1 n n ′ ∑ e − β E n ⟨ n ∣ A ^ ∣ n ′ ⟩ ⟨ n ′ ∣ B ^ ∣ n ⟩ e ( E n − E n ′ ) ( τ − τ ′ ) /ℏ
We take the Fourier transform by integrating over [ 0 , ℏ β ] [0, \hbar \beta] [ 0 , ℏ β ] :
C A B ( i ω m ) = − 1 ℏ Z ∑ n n ′ e − β E n ⟨ n ∣ A ^ ∣ n ′ ⟩ ⟨ n ′ ∣ B ^ ∣ n ⟩ ∫ 0 ℏ β e ( E n − E n ′ ) τ / ℏ e i ω m τ d τ = − 1 ℏ Z ∑ n n ′ e − β E n ⟨ n ∣ A ^ ∣ n ′ ⟩ ⟨ n ′ ∣ B ^ ∣ n ⟩ [ ℏ e ( i ℏ ω m + E n − E n ′ ) τ / ℏ i ℏ ω m + E n − E n ′ ] 0 ℏ β = − 1 Z ∑ n n ′ e − β E n ⟨ n ∣ A ^ ∣ n ′ ⟩ ⟨ n ′ ∣ B ^ ∣ n ⟩ i ℏ ω m + E n − E n ′ ( e ( i ℏ ω m + E n − E n ′ ) β − 1 ) = − 1 Z ∑ n n ′ ⟨ n ∣ A ^ ∣ n ′ ⟩ ⟨ n ′ ∣ B ^ ∣ n ⟩ i ℏ ω m + E n − E n ′ ( e i ℏ ω m β e − β E n ′ − e − β E n ) = 1 Z ∑ n n ′ ⟨ n ∣ A ^ ∣ n ′ ⟩ ⟨ n ′ ∣ B ^ ∣ n ⟩ i ℏ ω m + E n − E n ′ ( e − β E n ∓ e − β E n ′ ) \begin{aligned}
C_{AB}(i \omega_m)
&= - \frac{1}{\hbar Z} \sum_{n n'} e^{-\beta E_n} \matrixel{n}{\hat{A}}{n'}
\matrixel{n'}{\hat{B}}{n} \int_0^{\hbar \beta} e^{(E_n - E_{n'}) \tau / \hbar} e^{i \omega_m \tau} \dd{\tau}
\\
&= - \frac{1}{\hbar Z} \sum_{n n'} e^{-\beta E_n} \matrixel{n}{\hat{A}}{n'} \matrixel{n'}{\hat{B}}{n}
\bigg[ \frac{\hbar e^{(i \hbar \omega_m + E_n - E_{n'}) \tau / \hbar}}{i \hbar \omega_m + E_n - E_{n'}} \bigg]_0^{\hbar \beta}
\\
&= - \frac{1}{Z} \sum_{n n'} e^{-\beta E_n} \frac{\matrixel{n}{\hat{A}}{n'} \matrixel{n'}{\hat{B}}{n}}{i \hbar \omega_m + E_n - E_{n'}}
\Big( e^{(i \hbar \omega_m + E_n - E_{n'}) \beta} - 1 \Big)
\\
&= - \frac{1}{Z} \sum_{n n'} \frac{\matrixel{n}{\hat{A}}{n'} \matrixel{n'}{\hat{B}}{n}}{i \hbar \omega_m + E_n - E_{n'}}
\Big( e^{i \hbar \omega_m \beta} e^{-\beta E_{n'}} - e^{-\beta E_n} \Big)
\\
&= \frac{1}{Z} \sum_{n n'} \frac{\matrixel{n}{\hat{A}}{n'} \matrixel{n'}{\hat{B}}{n}}{i \hbar \omega_m + E_n - E_{n'}}
\Big( e^{-\beta E_n} \mp e^{- \beta E_{n'}} \Big)
\end{aligned} C A B ( i ω m ) = − ℏ Z 1 n n ′ ∑ e − β E n ⟨ n ∣ A ^ ∣ n ′ ⟩ ⟨ n ′ ∣ B ^ ∣ n ⟩ ∫ 0 ℏ β e ( E n − E n ′ ) τ /ℏ e i ω m τ d τ = − ℏ Z 1 n n ′ ∑ e − β E n ⟨ n ∣ A ^ ∣ n ′ ⟩ ⟨ n ′ ∣ B ^ ∣ n ⟩ [ i ℏ ω m + E n − E n ′ ℏ e ( i ℏ ω m + E n − E n ′ ) τ /ℏ ] 0 ℏ β = − Z 1 n n ′ ∑ e − β E n i ℏ ω m + E n − E n ′ ⟨ n ∣ A ^ ∣ n ′ ⟩ ⟨ n ′ ∣ B ^ ∣ n ⟩ ( e ( i ℏ ω m + E n − E n ′ ) β − 1 ) = − Z 1 n n ′ ∑ i ℏ ω m + E n − E n ′ ⟨ n ∣ A ^ ∣ n ′ ⟩ ⟨ n ′ ∣ B ^ ∣ n ⟩ ( e i ℏ ω m β e − β E n ′ − e − β E n ) = Z 1 n n ′ ∑ i ℏ ω m + E n − E n ′ ⟨ n ∣ A ^ ∣ n ′ ⟩ ⟨ n ′ ∣ B ^ ∣ n ⟩ ( e − β E n ∓ e − β E n ′ )
Moving on to τ − τ ′ < 0 \tau \!-\! \tau' < 0 τ − τ ′ < 0 ,
we again expand in the many-particle eigenstates ∣ n ⟩ \Ket{n} ∣ n ⟩ :
C A B ( τ − τ ′ ) = ∓ 1 ℏ Z ∑ n ⟨ n | e − β H ^ e − ( τ − τ ′ ) H ^ / ℏ B ^ e ( τ − τ ′ ) H ^ / ℏ A ^ | n ⟩ = ∓ 1 ℏ Z ∑ n n ′ ⟨ n | e − β H ^ e − ( τ − τ ′ ) H ^ / ℏ B ^ | n ′ ⟩ ⟨ n ′ | e ( τ − τ ′ ) H ^ / ℏ A ^ | n ⟩ = ∓ 1 ℏ Z ∑ n n ′ e − β E n ⟨ n ∣ B ^ ∣ n ′ ⟩ ⟨ n ′ ∣ A ^ ∣ n ⟩ e − ( E n − E n ′ ) ( τ − τ ′ ) / ℏ \begin{aligned}
C_{AB}(\tau \!-\! \tau')
&= \mp \frac{1}{\hbar Z} \sum_{n}
\Matrixel{n}{e^{-\beta \hat{H}} e^{- (\tau - \tau') \hat{H} / \hbar} \hat{B} e^{(\tau - \tau') \hat{H} / \hbar} \hat{A}}{n}
\\
&= \mp \frac{1}{\hbar Z} \sum_{n n'} \Matrixel{n}{e^{-\beta \hat{H}} e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B}}{n'}
\Matrixel{n'}{e^{(\tau - \tau') \hat{H} / \hbar} \hat{A}}{n}
\\
&= \mp \frac{1}{\hbar Z} \sum_{n n'} e^{-\beta E_n} \matrixel{n}{\hat{B}}{n'}
\matrixel{n'}{\hat{A}}{n} e^{-(E_n - E_{n'})(\tau - \tau') / \hbar}
\end{aligned} C A B ( τ − τ ′ ) = ∓ ℏ Z 1 n ∑ ⟨ n e − β H ^ e − ( τ − τ ′ ) H ^ /ℏ B ^ e ( τ − τ ′ ) H ^ /ℏ A ^ n ⟩ = ∓ ℏ Z 1 n n ′ ∑ ⟨ n e − β H ^ e − ( τ − τ ′ ) H ^ /ℏ B ^ n ′ ⟩ ⟨ n ′ e ( τ − τ ′ ) H ^ /ℏ A ^ n ⟩ = ∓ ℏ Z 1 n n ′ ∑ e − β E n ⟨ n ∣ B ^ ∣ n ′ ⟩ ⟨ n ′ ∣ A ^ ∣ n ⟩ e − ( E n − E n ′ ) ( τ − τ ′ ) /ℏ
Since τ − τ ′ < 0 \tau \!-\! \tau' < 0 τ − τ ′ < 0 this time,
we take the Fourier transform over [ − ℏ β , 0 ] [-\hbar \beta, 0] [ − ℏ β , 0 ] :
C A B ( i ω m ) = ∓ 1 ℏ Z ∑ n n ′ e − β E n ⟨ n ∣ B ^ ∣ n ′ ⟩ ⟨ n ′ ∣ A ^ ∣ n ⟩ ∫ − ℏ β 0 e − ( E n − E n ′ ) τ / ℏ e i ω m τ d τ = ∓ 1 ℏ Z ∑ n n ′ e − β E n ⟨ n ∣ B ^ ∣ n ′ ⟩ ⟨ n ′ ∣ A ^ ∣ n ⟩ [ ℏ e ( i ℏ ω m − E n + E n ′ ) τ / ℏ i ℏ ω m − E n + E n ′ ] − ℏ β 0 = ∓ 1 Z ∑ n n ′ e − β E n ⟨ n ∣ B ^ ∣ n ′ ⟩ ⟨ n ′ ∣ A ^ ∣ n ⟩ i ℏ ω m − E n + E n ′ ( 1 − e ( − i ℏ ω m + E n − E n ′ ) β ) = ∓ 1 Z ∑ n n ′ ⟨ n ∣ B ^ ∣ n ′ ⟩ ⟨ n ′ ∣ A ^ ∣ n ⟩ i ℏ ω m − E n + E n ′ ( e − β E n − e − i ℏ ω m β e − β E n ′ ) = ∓ 1 Z ∑ n n ′ ⟨ n ∣ B ^ ∣ n ′ ⟩ ⟨ n ′ ∣ A ^ ∣ n ⟩ i ℏ ω m − E n + E n ′ ( e − β E n ± e − β E n ′ ) = 1 Z ∑ n n ′ ⟨ n ∣ B ^ ∣ n ′ ⟩ ⟨ n ′ ∣ A ^ ∣ n ⟩ i ℏ ω m − E n + E n ′ ( e − β E n ′ ∓ e − β E n ) \begin{aligned}
C_{AB}(i \omega_m)
&= \mp \frac{1}{\hbar Z} \sum_{n n'} e^{-\beta E_n} \matrixel{n}{\hat{B}}{n'}
\matrixel{n'}{\hat{A}}{n} \int_{-\hbar \beta}^0 e^{-(E_n - E_{n'}) \tau / \hbar} e^{i \omega_m \tau} \dd{\tau}
\\
&= \mp \frac{1}{\hbar Z} \sum_{n n'} e^{-\beta E_n} \matrixel{n}{\hat{B}}{n'} \matrixel{n'}{\hat{A}}{n}
\bigg[ \frac{\hbar e^{(i \hbar \omega_m - E_n + E_{n'}) \tau / \hbar}}{i \hbar \omega_m - E_n + E_{n'}} \bigg]_{-\hbar \beta}^0
\\
&= \mp \frac{1}{Z} \sum_{n n'} e^{-\beta E_n} \frac{\matrixel{n}{\hat{B}}{n'} \matrixel{n'}{\hat{A}}{n}}{i \hbar \omega_m - E_n + E_{n'}}
\Big( 1 - e^{(-i \hbar \omega_m + E_n - E_{n'}) \beta} \Big)
\\
&= \mp \frac{1}{Z} \sum_{n n'} \frac{\matrixel{n}{\hat{B}}{n'} \matrixel{n'}{\hat{A}}{n}}{i \hbar \omega_m - E_n + E_{n'}}
\Big( e^{-\beta E_n} - e^{-i \hbar \omega_m \beta} e^{-\beta E_{n'}} \Big)
\\
&= \mp \frac{1}{Z} \sum_{n n'} \frac{\matrixel{n}{\hat{B}}{n'} \matrixel{n'}{\hat{A}}{n}}{i \hbar \omega_m - E_n + E_{n'}}
\Big( e^{- \beta E_n} \pm e^{-\beta E_{n'}} \Big)
\\
&= \frac{1}{Z} \sum_{n n'} \frac{\matrixel{n}{\hat{B}}{n'} \matrixel{n'}{\hat{A}}{n}}{i \hbar \omega_m - E_n + E_{n'}}
\Big( e^{- \beta E_{n'}} \mp e^{-\beta E_n} \Big)
\end{aligned} C A B ( i ω m ) = ∓ ℏ Z 1 n n ′ ∑ e − β E n ⟨ n ∣ B ^ ∣ n ′ ⟩ ⟨ n ′ ∣ A ^ ∣ n ⟩ ∫ − ℏ β 0 e − ( E n − E n ′ ) τ /ℏ e i ω m τ d τ = ∓ ℏ Z 1 n n ′ ∑ e − β E n ⟨ n ∣ B ^ ∣ n ′ ⟩ ⟨ n ′ ∣ A ^ ∣ n ⟩ [ i ℏ ω m − E n + E n ′ ℏ e ( i ℏ ω m − E n + E n ′ ) τ /ℏ ] − ℏ β 0 = ∓ Z 1 n n ′ ∑ e − β E n i ℏ ω m − E n + E n ′ ⟨ n ∣ B ^ ∣ n ′ ⟩ ⟨ n ′ ∣ A ^ ∣ n ⟩ ( 1 − e ( − i ℏ ω m + E n − E n ′ ) β ) = ∓ Z 1 n n ′ ∑ i ℏ ω m − E n + E n ′ ⟨ n ∣ B ^ ∣ n ′ ⟩ ⟨ n ′ ∣ A ^ ∣ n ⟩ ( e − β E n − e − i ℏ ω m β e − β E n ′ ) = ∓ Z 1 n n ′ ∑ i ℏ ω m − E n + E n ′ ⟨ n ∣ B ^ ∣ n ′ ⟩ ⟨ n ′ ∣ A ^ ∣ n ⟩ ( e − β E n ± e − β E n ′ ) = Z 1 n n ′ ∑ i ℏ ω m − E n + E n ′ ⟨ n ∣ B ^ ∣ n ′ ⟩ ⟨ n ′ ∣ A ^ ∣ n ⟩ ( e − β E n ′ ∓ e − β E n )
Where swapping n n n and n ′ n' n ′ gives the desired result.
This gives us the primary use of the Matsubara Green’s function C A B C_{AB} C A B :
calculating the retarded C A B R C_{AB}^R C A B R and advanced C A B A C_{AB}^A C A B A .
Once we have an expression for Matsubara’s C A B C_{AB} C A B ,
we can recover C A B R C_{AB}^R C A B R and C A B A C_{AB}^A C A B A by substituting
i ω m → ω + i η i \omega_m \to \omega \!+\! i \eta i ω m → ω + i η and i ω m → ω − i η i \omega_m \to \omega \!-\! i \eta i ω m → ω − i η respectively.
In general, we can define the canonical Green’s function C A B ( z ) C_{AB}(z) C A B ( z )
on the complex plane:
C A B ( z ) = 1 Z ∑ n n ′ ⟨ n ∣ A ^ ∣ n ′ ⟩ ⟨ n ′ ∣ B ^ ∣ n ⟩ z + E n − E n ′ ( e − β E n ∓ e − β E n ′ ) \begin{aligned}
C_{AB}(z)
= \frac{1}{Z} \sum_{n n'} \frac{\matrixel{n}{\hat{A}}{n'} \matrixel{n'}{\hat{B}}{n}}{z + E_n - E_{n'}}
\Big( e^{-\beta E_n} \mp e^{- \beta E_{n'}} \Big)
\end{aligned} C A B ( z ) = Z 1 n n ′ ∑ z + E n − E n ′ ⟨ n ∣ A ^ ∣ n ′ ⟩ ⟨ n ′ ∣ B ^ ∣ n ⟩ ( e − β E n ∓ e − β E n ′ )
This is a holomorphic function ,
except for poles on the real axis.
It turns out that C A B ( z ) C_{AB}(z) C A B ( z ) must have these properties
for the substitution i ω n → ω ± i η i \omega_n \to \omega \!\pm\! i \eta i ω n → ω ± i η to be valid.
References
H. Bruus, K. Flensberg,
Many-body quantum theory in condensed matter physics ,
2016, Oxford.