Categories: Physics, Quantum mechanics.

Matsubara Green’s function

The Matsubara Green’s function is an imaginary-time version of the real-time Green’s functions. We define it as follows in the imaginary-time Heisenberg picture:

CAB(τ,τ)1T{A^(τ)B^(τ)}\begin{aligned} \boxed{ C_{AB}(\tau, \tau') \equiv -\frac{1}{\hbar} \Expval{\mathcal{T} \big\{ \hat{A}(\tau) \hat{B}(\tau') \big\}} } \end{aligned}

Where the expectation value \Expval{} is with respect to thermodynamic equilibrium, and T\mathcal{T} is the time-ordered product pseudo-operator. Because the Hamiltonian H^\hat{H} cannot depend on the imaginary time, CABC_{AB} is a function of the difference τ ⁣ ⁣τ\tau \!-\! \tau' only:

CAB(τ,τ)=1ZTr ⁣(eβH^A^(τ)B^(τ))=1ZTr ⁣(eβH^eτH^/A^eτH^/eτH^/B^eτH^/)=1ZTr ⁣(eβH^e(ττ)H^/A^e(ττ)H^/B^)\begin{aligned} C_{AB}(\tau, \tau') &= - \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} \hat{A}(\tau) \hat{B}(\tau') \Big) \\ &= - \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} e^{\tau \hat{H} / \hbar} \hat{A} e^{-\tau \hat{H} / \hbar} e^{\tau' \hat{H} / \hbar} \hat{B} e^{-\tau' \hat{H} / \hbar} \Big) \\ &= - \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} e^{(\tau - \tau') \hat{H} / \hbar} \hat{A} e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B} \Big) \end{aligned}

For τ>τ\tau > \tau', we see by expanding in the many-particle eigenstates n\Ket{n} that we need to demand β>τ ⁣ ⁣τ\hbar \beta > \tau \!-\! \tau' to prevent CABC_{AB} from diverging for increasing temperatures:

CAB(τ ⁣ ⁣τ)=1Znn|eβH^e(ττ)H^/A^e(ττ)H^/B^|n=1Znn|A^e(ττ)H^/B^|neβEne(ττ)En/\begin{aligned} C_{AB}(\tau \!-\! \tau') &= - \frac{1}{\hbar Z} \sum_{n} \Matrixel{n}{e^{-\beta \hat{H}} e^{(\tau - \tau') \hat{H} / \hbar} \hat{A} e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B}}{n} \\ &= - \frac{1}{\hbar Z} \sum_{n} \Matrixel{n}{\hat{A} e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B}}{n} e^{-\beta E_n} e^{(\tau - \tau') E_n / \hbar} \end{aligned}

And likewise, for τ<τ\tau < \tau', we must demand that τ ⁣ ⁣τ>β\tau \!-\! \tau' > -\hbar \beta for the same reason:

CAB(τ ⁣ ⁣τ)=1ZTr ⁣(eβH^B^(τ)A^(τ))=1ZTr ⁣(eβH^e(ττ)H^/B^e(ττ)H^/A^)=1Znn|B^e(ττ)H^/A^|neβEne(ττ)En/\begin{aligned} C_{AB}(\tau \!-\! \tau') &= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} \hat{B}(\tau') \hat{A}(\tau) \Big) \\ &= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B} e^{(\tau - \tau') \hat{H} / \hbar} \hat{A} \Big) \\ &= \mp \frac{1}{\hbar Z} \sum_{n} \Matrixel{n}{\hat{B} e^{(\tau - \tau') \hat{H} / \hbar} \hat{A}}{n} e^{-\beta E_n} e^{- (\tau - \tau') E_n / \hbar} \end{aligned}

With - for bosons, and ++ for fermions, due to the time-ordered product for τ>τ\tau > \tau'.

On this domain [β,β][-\hbar \beta, \hbar \beta], the Matsubara Green’s function CABC_{AB} obeys a useful shift relation: it is β\hbar \beta-periodic for bosons, and β\hbar \beta-antiperiodic for fermions:

CAB(τ ⁣ ⁣τ)={±CAB(τ ⁣ ⁣τ ⁣+ ⁣β)if  τ ⁣ ⁣τ<0±CAB(τ ⁣ ⁣τ ⁣ ⁣β)if  τ ⁣ ⁣τ>0\begin{aligned} \boxed{ C_{AB}(\tau \!-\! \tau') = \begin{cases} \pm C_{AB}(\tau \!-\! \tau' \!+\! \hbar \beta) & \mathrm{if\;} \tau \!-\! \tau' < 0 \\ \pm C_{AB}(\tau \!-\! \tau' \!-\! \hbar \beta) & \mathrm{if\;} \tau \!-\! \tau' > 0 \end{cases} } \end{aligned}

First τ ⁣ ⁣τ<0\tau \!-\! \tau' < 0. We insert the argument τ ⁣ ⁣τ ⁣+ ⁣β\tau \!-\! \tau' \!+\! \hbar \beta, and use the cyclic property:

CAB(τ ⁣ ⁣τ ⁣+ ⁣β)=1ZTr ⁣(eβH^e(ττ+β)H^/A^e(ττ+β)H^/B^)=1ZTr ⁣(e(ττ)H^/A^e(ττ)H^/eβH^B^)=1ZTr ⁣(eβH^eτH^/B^eτH^/eτH^/A^eτH^/)=1ZTr ⁣(eβH^B^(τ)A^(τ))\begin{aligned} C_{AB}(\tau \!-\! \tau' \!+\! \hbar \beta) &= - \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} e^{(\tau - \tau' + \hbar \beta) \hat{H} / \hbar} \hat{A} e^{-(\tau - \tau' + \hbar \beta) \hat{H} / \hbar} \hat{B} \Big) \\ &= - \frac{1}{\hbar Z} \Tr\!\Big( e^{(\tau - \tau') \hat{H} / \hbar} \hat{A} e^{-(\tau - \tau') \hat{H} / \hbar} e^{-\beta \hat{H}} \hat{B} \Big) \\ &= - \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} e^{\tau' \hat{H} / \hbar} \hat{B} e^{-\tau' \hat{H} / \hbar} e^{\tau \hat{H} / \hbar} \hat{A} e^{-\tau \hat{H} / \hbar} \Big) \\ &= - \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} \hat{B}(\tau') \hat{A}(\tau) \Big) \end{aligned}

Since τ<τ\tau < \tau' by assumption, we can bring back the time-ordered product T\mathcal{T}:

CAB(τ ⁣ ⁣τ ⁣+ ⁣β)=1ZTr ⁣(eβH^T{A^(τ)B^(τ)})=±CAB(τ ⁣ ⁣τ)\begin{aligned} C_{AB}(\tau \!-\! \tau' \!+\! \hbar \beta) &= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} \mathcal{T}\big\{ \hat{A}(\tau) \hat{B}(\tau') \big\} \Big) \\ &= \pm C_{AB}(\tau \!-\! \tau') \end{aligned}

Moving on to τ ⁣ ⁣τ>0\tau \!-\! \tau' > 0, the proof is perfectly analogous:

CAB(τ ⁣ ⁣τ ⁣ ⁣β)=1ZTr ⁣(eβH^e(ττβ)H^/B^e(ττβ)H^/A^)=1ZTr ⁣(e(ττ)H^/B^e(ττ)H^/eβH^A^)=1ZTr ⁣(eβH^eτH^/A^eτH^/eτH^/B^eτH^/)=1ZTr ⁣(eβH^A^(τ)B^(τ))=1ZTr ⁣(eβH^T{A^(τ)B^(τ)})=±CAB(τ ⁣ ⁣τ)\begin{aligned} C_{AB}(\tau \!-\! \tau' \!-\! \hbar \beta) &= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} e^{-(\tau - \tau' - \hbar \beta) \hat{H} / \hbar} \hat{B} e^{(\tau - \tau' - \hbar \beta) \hat{H} / \hbar} \hat{A} \Big) \\ &= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B} e^{(\tau - \tau') \hat{H} / \hbar} e^{-\beta \hat{H}} \hat{A} \Big) \\ &= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} e^{\tau \hat{H} / \hbar} \hat{A} e^{-\tau \hat{H} / \hbar} e^{\tau' \hat{H} / \hbar} \hat{B} e^{-\tau' \hat{H} / \hbar} \Big) \\ &= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} \hat{A}(\tau) \hat{B}(\tau') \Big) \\ &= \mp \frac{1}{\hbar Z} \Tr\!\Big( e^{-\beta \hat{H}} \mathcal{T}\big\{ \hat{A}(\tau) \hat{B}(\tau') \big\} \Big) \\ &= \pm C_{AB}(\tau \!-\! \tau') \end{aligned}

Due to this limited domain τ[β,β]\tau \in [-\hbar \beta, \hbar \beta], the Fourier transform of CAB(τ)C_{AB}(\tau) consists of discrete frequencies knnπ/(β)k_n \equiv n \pi / (\hbar \beta). The forward and inverse Fourier transforms are therefore defined as given below (with τ=0\tau' = 0). It is convention to write CAB(ikn)C_{AB}(i k_n) instead of CAB(kn)C_{AB}(k_n):

CAB(ikn)12ββCAB(τ)eiknτdτCAB(τ)=1βn=CAB(ikn)eiknτ\begin{aligned} \boxed{ \begin{aligned} C_{AB}(i k_n) &\equiv \frac{1}{2} \int_{-\hbar \beta}^{\hbar \beta} C_{AB}(\tau) \: e^{i k_n \tau} \dd{\tau} \\ C_{AB}(\tau) &= \frac{1}{\hbar \beta} \sum_{n = -\infty}^\infty C_{AB}(i k_n) e^{-i k_n \tau} \end{aligned} } \end{aligned}

We will prove that one is indeed the inverse of the other. We demand that the inverse FT of the forward FT of CAB(τ)C_{AB}(\tau) is simply CAB(τ)C_{AB}(\tau) again:

CAB(τ)=1βn=(12ββCAB(τ)eiknτdτ)eiknτ=1βββCAB(τ)(12n=eikn(ττ))dτ=πβββCAB(τ)(12πn=eiπn(ττ)/β)dτ\begin{aligned} C_{AB}(\tau) &= \frac{1}{\hbar \beta} \sum_{n = -\infty}^\infty \bigg( \frac{1}{2} \int_{-\hbar \beta}^{\hbar \beta} C_{AB}(\tau') \: e^{i k_n \tau'} \dd{\tau'} \bigg) e^{-i k_n \tau} \\ &= \frac{1}{\hbar \beta} \int_{-\hbar \beta}^{\hbar \beta} C_{AB}(\tau') \bigg( \frac{1}{2} \sum_{n = -\infty}^\infty e^{i k_n (\tau' - \tau)} \bigg) \dd{\tau'} \\ &= \frac{\pi}{\hbar \beta} \int_{-\hbar \beta}^{\hbar \beta} C_{AB}(\tau') \bigg( \frac{1}{2 \pi} \sum_{n = -\infty}^\infty e^{i \pi n (\tau' - \tau) / \hbar \beta} \bigg) \dd{\tau'} \end{aligned}

Here, the inner expression turns out to be a Dirac delta function:

12πn=einx=δ(x)\begin{aligned} \frac{1}{2 \pi} \sum_{n = -\infty}^\infty e^{i n x} = \delta(x) \end{aligned}

From which the rest of the proof follows straightforwardly:

CAB(τ)=πβββCAB(τ)δ((τ ⁣ ⁣τ)π/β)dτ=πβπβββCAB(τ)δ(τ ⁣ ⁣τ)dτ=ββCAB(τ)δ(τ ⁣ ⁣τ)dτ=CAB(τ)\begin{aligned} C_{AB}(\tau) &= \frac{\pi}{\hbar \beta} \int_{-\hbar \beta}^{\hbar \beta} C_{AB}(\tau') \: \delta\big( (\tau' \!-\! \tau) \pi / \hbar \beta \big) \dd{\tau'} \\ &= \frac{\pi \hbar \beta}{\pi \hbar \beta} \int_{-\hbar \beta}^{\hbar \beta} C_{AB}(\tau') \: \delta(\tau' \!-\! \tau) \dd{\tau'} \\ &= \int_{-\hbar \beta}^{\hbar \beta} C_{AB}(\tau') \: \delta(\tau' \!-\! \tau) \dd{\tau'} \\ &= C_{AB}(\tau) \end{aligned}

Let us now define the Matsubara frequencies ωn\omega_n as a species-dependent subset of knk_n:

ωn{2nπβbosons(2n+1)πβfermions\begin{aligned} \boxed{ \omega_n \equiv \begin{cases} \displaystyle\frac{2 n \pi}{\hbar \beta} & \mathrm{bosons} \\ \displaystyle\frac{(2 n + 1) \pi}{\hbar \beta} & \mathrm{fermions} \end{cases} } \end{aligned}

With this, we can rewrite the definition of the forward Fourier transform as follows:

CAB(iωn)=0βCAB(τ)eiωnτdτ=β0CAB(τ)eiωnτdτ\begin{aligned} \boxed{ C_{AB}(i \omega_n) = \int_0^{\hbar \beta} C_{AB}(\tau) \: e^{i \omega_n \tau} \dd{\tau} = \int_{-\hbar \beta}^0 C_{AB}(\tau) \: e^{i \omega_n \tau} \dd{\tau} } \end{aligned}

We split the integral, shift its limits, and use the (anti)periodicity of CABC_{AB}:

CAB(ikn)=120βCAB(τ)eiknτdτ+12β0CAB(τ)eiknτdτ=120βCAB(τ)eiknτdτ+120βCAB(τ ⁣ ⁣β)eikn(τβ)dτ=120β(CAB(τ)±CAB(τ)eiknβ)eiknτdτ=12(1±eiknβ)0βCAB(τ)eiknτdτ\begin{aligned} C_{AB}(i k_n) &= \frac{1}{2} \int_0^{\hbar \beta} C_{AB}(\tau) \: e^{i k_n \tau} \dd{\tau} + \frac{1}{2} \int_{-\hbar \beta}^0 C_{AB}(\tau) \: e^{i k_n \tau} \dd{\tau} \\ &= \frac{1}{2} \int_0^{\hbar \beta} C_{AB}(\tau) \: e^{i k_n \tau} \dd{\tau} + \frac{1}{2} \int_0^{\hbar \beta} C_{AB}(\tau \!-\! \hbar \beta) \: e^{i k_n (\tau - \hbar \beta)} \dd{\tau} \\ &= \frac{1}{2} \int_0^{\hbar \beta} \Big( C_{AB}(\tau) \pm C_{AB}(\tau) \: e^{-i k_n \hbar \beta} \Big) \: e^{i k_n \tau} \dd{\tau} \\ &= \frac{1}{2} \big( 1 \pm e^{-i k_n \hbar \beta} \big) \int_0^{\hbar \beta} C_{AB}(\tau) \: e^{i k_n \tau} \dd{\tau} \end{aligned}

With ++ for bosons, and - for fermions. Since knnπ/(β)k_n \equiv n \pi / (\hbar \beta), we know eiknβ{1,1}e^{-i k_n \hbar \beta} \in \{-1, 1\}, so for bosons all odd nn vanish, and for fermions all even nn, yielding the desired result.

For the other case, we simply shift the first integral’s limits instead of the seconds’:

CAB(ikn)=12β0CAB(τ ⁣+ ⁣β)eikn(τ+β)dτ+120βCAB(τ)eiknτdτ=12β0(CAB(τ)±CAB(τ)eiknβ)eiknτdτ=12(1±eiknβ)β0CAB(τ)eiknτdτ\begin{aligned} C_{AB}(i k_n) &= \frac{1}{2} \int_{-\hbar \beta}^0 C_{AB}(\tau \!+\! \hbar \beta) \: e^{i k_n (\tau + \hbar \beta)} \dd{\tau} + \frac{1}{2} \int_0^{\hbar \beta} C_{AB}(\tau) \: e^{i k_n \tau} \dd{\tau} \\ &= \frac{1}{2} \int_{-\hbar \beta}^0 \Big( C_{AB}(\tau) \pm C_{AB}(\tau) \: e^{i k_n \hbar \beta} \Big) \: e^{i k_n \tau} \dd{\tau} \\ &= \frac{1}{2} \big( 1 \pm e^{-i k_n \hbar \beta} \big) \int_{-\hbar \beta}^0 C_{AB}(\tau) \: e^{i k_n \tau} \dd{\tau} \end{aligned}

If we actually evaluate this, we obtain the following form of CABC_{AB}, which is almost identical to the Lehmann representation of the “ordinary” retarded and advanced Green’s functions:

CAB(iωm)=1ZnnnA^nnB^niωm+EnEn(eβEneβEn)\begin{aligned} \boxed{ C_{AB}(i \omega_m) = \frac{1}{Z} \sum_{n n'} \frac{\matrixel{n}{\hat{A}}{n'} \matrixel{n'}{\hat{B}}{n}}{i \hbar \omega_m + E_n - E_{n'}} \Big( e^{-\beta E_n} \mp e^{- \beta E_{n'}} \Big) } \end{aligned}

For τ ⁣ ⁣τ>0\tau \!-\! \tau' > 0, we start by expanding in the many-particle eigenstates n\Ket{n}:

CAB(τ ⁣ ⁣τ)=1Znn|eβH^e(ττ)H^/A^e(ττ)H^/B^|n=1Znnn|eβH^e(ττ)H^/A^|nn|e(ττ)H^/B^|n=1ZnneβEnnA^nnB^ne(EnEn)(ττ)/\begin{aligned} C_{AB}(\tau \!-\! \tau') &= - \frac{1}{\hbar Z} \sum_{n} \Matrixel{n}{e^{-\beta \hat{H}} e^{(\tau - \tau') \hat{H} / \hbar} \hat{A} e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B}}{n} \\ &= - \frac{1}{\hbar Z} \sum_{n n'} \Matrixel{n}{e^{-\beta \hat{H}} e^{(\tau - \tau') \hat{H} / \hbar} \hat{A}}{n'} \Matrixel{n'}{e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B}}{n} \\ &= - \frac{1}{\hbar Z} \sum_{n n'} e^{-\beta E_n} \matrixel{n}{\hat{A}}{n'} \matrixel{n'}{\hat{B}}{n} e^{(E_n - E_{n'})(\tau - \tau') / \hbar} \end{aligned}

We take the Fourier transform by integrating over [0,β][0, \hbar \beta]:

CAB(iωm)=1ZnneβEnnA^nnB^n0βe(EnEn)τ/eiωmτdτ=1ZnneβEnnA^nnB^n[e(iωm+EnEn)τ/iωm+EnEn]0β=1ZnneβEnnA^nnB^niωm+EnEn(e(iωm+EnEn)β1)=1ZnnnA^nnB^niωm+EnEn(eiωmβeβEneβEn)=1ZnnnA^nnB^niωm+EnEn(eβEneβEn)\begin{aligned} C_{AB}(i \omega_m) &= - \frac{1}{\hbar Z} \sum_{n n'} e^{-\beta E_n} \matrixel{n}{\hat{A}}{n'} \matrixel{n'}{\hat{B}}{n} \int_0^{\hbar \beta} e^{(E_n - E_{n'}) \tau / \hbar} e^{i \omega_m \tau} \dd{\tau} \\ &= - \frac{1}{\hbar Z} \sum_{n n'} e^{-\beta E_n} \matrixel{n}{\hat{A}}{n'} \matrixel{n'}{\hat{B}}{n} \bigg[ \frac{\hbar e^{(i \hbar \omega_m + E_n - E_{n'}) \tau / \hbar}}{i \hbar \omega_m + E_n - E_{n'}} \bigg]_0^{\hbar \beta} \\ &= - \frac{1}{Z} \sum_{n n'} e^{-\beta E_n} \frac{\matrixel{n}{\hat{A}}{n'} \matrixel{n'}{\hat{B}}{n}}{i \hbar \omega_m + E_n - E_{n'}} \Big( e^{(i \hbar \omega_m + E_n - E_{n'}) \beta} - 1 \Big) \\ &= - \frac{1}{Z} \sum_{n n'} \frac{\matrixel{n}{\hat{A}}{n'} \matrixel{n'}{\hat{B}}{n}}{i \hbar \omega_m + E_n - E_{n'}} \Big( e^{i \hbar \omega_m \beta} e^{-\beta E_{n'}} - e^{-\beta E_n} \Big) \\ &= \frac{1}{Z} \sum_{n n'} \frac{\matrixel{n}{\hat{A}}{n'} \matrixel{n'}{\hat{B}}{n}}{i \hbar \omega_m + E_n - E_{n'}} \Big( e^{-\beta E_n} \mp e^{- \beta E_{n'}} \Big) \end{aligned}

Moving on to τ ⁣ ⁣τ<0\tau \!-\! \tau' < 0, we again expand in the many-particle eigenstates n\Ket{n}:

CAB(τ ⁣ ⁣τ)=1Znn|eβH^e(ττ)H^/B^e(ττ)H^/A^|n=1Znnn|eβH^e(ττ)H^/B^|nn|e(ττ)H^/A^|n=1ZnneβEnnB^nnA^ne(EnEn)(ττ)/\begin{aligned} C_{AB}(\tau \!-\! \tau') &= \mp \frac{1}{\hbar Z} \sum_{n} \Matrixel{n}{e^{-\beta \hat{H}} e^{- (\tau - \tau') \hat{H} / \hbar} \hat{B} e^{(\tau - \tau') \hat{H} / \hbar} \hat{A}}{n} \\ &= \mp \frac{1}{\hbar Z} \sum_{n n'} \Matrixel{n}{e^{-\beta \hat{H}} e^{-(\tau - \tau') \hat{H} / \hbar} \hat{B}}{n'} \Matrixel{n'}{e^{(\tau - \tau') \hat{H} / \hbar} \hat{A}}{n} \\ &= \mp \frac{1}{\hbar Z} \sum_{n n'} e^{-\beta E_n} \matrixel{n}{\hat{B}}{n'} \matrixel{n'}{\hat{A}}{n} e^{-(E_n - E_{n'})(\tau - \tau') / \hbar} \end{aligned}

Since τ ⁣ ⁣τ<0\tau \!-\! \tau' < 0 this time, we take the Fourier transform over [β,0][-\hbar \beta, 0]:

CAB(iωm)=1ZnneβEnnB^nnA^nβ0e(EnEn)τ/eiωmτdτ=1ZnneβEnnB^nnA^n[e(iωmEn+En)τ/iωmEn+En]β0=1ZnneβEnnB^nnA^niωmEn+En(1e(iωm+EnEn)β)=1ZnnnB^nnA^niωmEn+En(eβEneiωmβeβEn)=1ZnnnB^nnA^niωmEn+En(eβEn±eβEn)=1ZnnnB^nnA^niωmEn+En(eβEneβEn)\begin{aligned} C_{AB}(i \omega_m) &= \mp \frac{1}{\hbar Z} \sum_{n n'} e^{-\beta E_n} \matrixel{n}{\hat{B}}{n'} \matrixel{n'}{\hat{A}}{n} \int_{-\hbar \beta}^0 e^{-(E_n - E_{n'}) \tau / \hbar} e^{i \omega_m \tau} \dd{\tau} \\ &= \mp \frac{1}{\hbar Z} \sum_{n n'} e^{-\beta E_n} \matrixel{n}{\hat{B}}{n'} \matrixel{n'}{\hat{A}}{n} \bigg[ \frac{\hbar e^{(i \hbar \omega_m - E_n + E_{n'}) \tau / \hbar}}{i \hbar \omega_m - E_n + E_{n'}} \bigg]_{-\hbar \beta}^0 \\ &= \mp \frac{1}{Z} \sum_{n n'} e^{-\beta E_n} \frac{\matrixel{n}{\hat{B}}{n'} \matrixel{n'}{\hat{A}}{n}}{i \hbar \omega_m - E_n + E_{n'}} \Big( 1 - e^{(-i \hbar \omega_m + E_n - E_{n'}) \beta} \Big) \\ &= \mp \frac{1}{Z} \sum_{n n'} \frac{\matrixel{n}{\hat{B}}{n'} \matrixel{n'}{\hat{A}}{n}}{i \hbar \omega_m - E_n + E_{n'}} \Big( e^{-\beta E_n} - e^{-i \hbar \omega_m \beta} e^{-\beta E_{n'}} \Big) \\ &= \mp \frac{1}{Z} \sum_{n n'} \frac{\matrixel{n}{\hat{B}}{n'} \matrixel{n'}{\hat{A}}{n}}{i \hbar \omega_m - E_n + E_{n'}} \Big( e^{- \beta E_n} \pm e^{-\beta E_{n'}} \Big) \\ &= \frac{1}{Z} \sum_{n n'} \frac{\matrixel{n}{\hat{B}}{n'} \matrixel{n'}{\hat{A}}{n}}{i \hbar \omega_m - E_n + E_{n'}} \Big( e^{- \beta E_{n'}} \mp e^{-\beta E_n} \Big) \end{aligned}

Where swapping nn and nn' gives the desired result.

This gives us the primary use of the Matsubara Green’s function CABC_{AB}: calculating the retarded CABRC_{AB}^R and advanced CABAC_{AB}^A. Once we have an expression for Matsubara’s CABC_{AB}, we can recover CABRC_{AB}^R and CABAC_{AB}^A by substituting iωmω ⁣+ ⁣iηi \omega_m \to \omega \!+\! i \eta and iωmω ⁣ ⁣iηi \omega_m \to \omega \!-\! i \eta respectively.

In general, we can define the canonical Green’s function CAB(z)C_{AB}(z) on the complex plane:

CAB(z)=1ZnnnA^nnB^nz+EnEn(eβEneβEn)\begin{aligned} C_{AB}(z) = \frac{1}{Z} \sum_{n n'} \frac{\matrixel{n}{\hat{A}}{n'} \matrixel{n'}{\hat{B}}{n}}{z + E_n - E_{n'}} \Big( e^{-\beta E_n} \mp e^{- \beta E_{n'}} \Big) \end{aligned}

This is a holomorphic function, except for poles on the real axis. It turns out that CAB(z)C_{AB}(z) must have these properties for the substitution iωnω ⁣± ⁣iηi \omega_n \to \omega \!\pm\! i \eta to be valid.

References

  1. H. Bruus, K. Flensberg, Many-body quantum theory in condensed matter physics, 2016, Oxford.