Categories: Physics, Thermodynamics.

Maxwell relations

The Maxwell relations are a useful set of relations in thermodynamics. They arise from the fact that the order of differentiation is irrelevant for well-behaved functions (sometimes known as the Schwarz theorem), applied to the thermodynamic potentials.

We start by proving the general “recipe”. Given that the differential element of some zz is defined in terms of two constant quantities AA and BB and two independent variables xx and yy:

dzAdx+Bdy\begin{aligned} \dd{z} \equiv A \dd{x} + B \dd{y} \end{aligned}

Then the quantities AA and BB can be extracted by dividing by dx\dd{x} and dy\dd{y} respectively:

A=(zx)yB=(zy)x\begin{aligned} A = \Big( \pdv{z}{x} \Big)_y \qquad B = \Big( \pdv{z}{y} \Big)_x \end{aligned}

By differentiating AA and BB, and using that the order of differentiation is irrelevant, we find:

2zyx=(Ay)x=(Bx)y=2zxy\begin{aligned} \mpdv{z}{y}{x} = \boxed{ \Big( \pdv{A}{y} \Big)_x = \Big( \pdv{B}{x} \Big)_y } = \mpdv{z}{x}{y} \end{aligned}

Using this, all Maxwell relations are derived. Each relation also has a reciprocal form:

(Ay)x1=(yA)x=(xB)y=(Bx)y1\begin{aligned} \Big( \pdv{A}{y} \Big)_x^{-1} = \boxed{ \Big( \pdv{y}{A} \Big)_x = \Big( \pdv{x}{B} \Big)_y } = \Big( \pdv{B}{x} \Big)_y^{-1} \end{aligned}

The following quantities are useful to rewrite some of the Maxwell relations: the iso-PP thermal expansion coefficient α\alpha, the iso-TT combressibility κT\kappa_T, the iso-SS combressibility κS\kappa_S, the iso-VV heat capacity CVC_V, and the iso-PP heat capacity CPC_P:

α1V(VT)P,NκT1V(VP)T,NκS1V(VP)S,NCVT(ST)V,NCPT(ST)P,N\begin{gathered} \alpha \equiv \frac{1}{V} \Big( \pdv{V}{T} \Big)_{P,N} \\ \kappa_T \equiv - \frac{1}{V} \Big( \pdv{V}{P} \Big)_{T,N} \qquad \quad \kappa_S \equiv - \frac{1}{V} \Big( \pdv{V}{P} \Big)_{S,N} \\ C_V \equiv T \Big( \pdv{S}{T} \Big)_{V,N} \qquad \qquad C_P \equiv T \Big( \pdv{S}{T} \Big)_{P,N} \end{gathered}

Internal energy

The following Maxwell relations can be derived from the internal energy U(S,V,N)U(S, V, N):

2UVS=(TV)S=(PS)V=2USV2UVN=(μV)N=(PN)V=2UNV2USN=(μS)N=(TN)S=2UNS\begin{gathered} \mpdv{U}{V}{S} = \boxed{ \Big( \pdv{T}{V} \Big)_S = - \Big( \pdv{P}{S} \Big)_V } = \mpdv{U}{S}{V} \\ \mpdv{U}{V}{N} = \boxed{ \Big( \pdv{\mu}{V} \Big)_N = - \Big( \pdv{P}{N} \Big)_V } = \mpdv{U}{N}{V} \\ \mpdv{U}{S}{N} = \boxed{ \Big( \pdv{\mu}{S} \Big)_N = \Big( \pdv{T}{N} \Big)_S } = \mpdv{U}{N}{S} \end{gathered}

And the corresponding reciprocal relations are then given by:

(VT)S=(SP)V(Vμ)N=(NP)V(Sμ)N=(NT)S\begin{gathered} \boxed{ \Big( \pdv{V}{T} \Big)_S = - \Big( \pdv{S}{P} \Big)_V } \\ \boxed{ \Big( \pdv{V}{\mu} \Big)_N = - \Big( \pdv{N}{P} \Big)_V } \\ \boxed{ \Big( \pdv{S}{\mu} \Big)_N = \Big( \pdv{N}{T} \Big)_S } \end{gathered}

Enthalpy

The following Maxwell relations can be derived from the enthalpy H(S,P,N)H(S, P, N):

2HPS=(TP)S=(VS)P=2HSP2HPN=(μP)N=(VN)P=2HNP2HNS=(TN)S=(μS)N=2HSN\begin{gathered} \mpdv{H}{P}{S} = \boxed{ \Big( \pdv{T}{P} \Big)_S = \Big( \pdv{V}{S} \Big)_P } = \mpdv{H}{S}{P} \\ \mpdv{H}{P}{N} = \boxed{ \Big( \pdv{\mu}{P} \Big)_N = \Big( \pdv{V}{N} \Big)_P } = \mpdv{H}{N}{P} \\ \mpdv{H}{N}{S} = \boxed{ \Big( \pdv{T}{N} \Big)_S = \Big( \pdv{\mu}{S} \Big)_N } = \mpdv{H}{S}{N} \end{gathered}

And the corresponding reciprocal relations are then given by:

(PT)S=(SV)P(Pμ)N=(NV)P(NT)S=(Sμ)N\begin{gathered} \boxed{ \Big( \pdv{P}{T} \Big)_S = \Big( \pdv{S}{V} \Big)_P } \\ \boxed{ \Big( \pdv{P}{\mu} \Big)_N = \Big( \pdv{N}{V} \Big)_P } \\ \boxed{ \Big( \pdv{N}{T} \Big)_S = \Big( \pdv{S}{\mu} \Big)_N } \end{gathered}

Helmholtz free energy

The following Maxwell relations can be derived from the Helmholtz free energy F(T,V,N)F(T, V, N):

2FVT=(SV)T=(PT)V=2FTV2FVN=(μV)N=(PN)V=2FNV2FTN=(μT)N=(SN)T=2FNT\begin{gathered} - \mpdv{F}{V}{T} = \boxed{ \Big( \pdv{S}{V} \Big)_T = \Big( \pdv{P}{T} \Big)_V } = - \mpdv{F}{T}{V} \\ \mpdv{F}{V}{N} = \boxed{ \Big( \pdv{\mu}{V} \Big)_N = - \Big( \pdv{P}{N} \Big)_V } = \mpdv{F}{N}{V} \\ \mpdv{F}{T}{N} = \boxed{ \Big( \pdv{\mu}{T} \Big)_N = - \Big( \pdv{S}{N} \Big)_T } = \mpdv{F}{N}{T} \end{gathered}

And the corresponding reciprocal relations are then given by:

(VS)T=(TP)V(Vμ)N=(NP)V(Tμ)N=(NS)T\begin{gathered} \boxed{ \Big( \pdv{V}{S} \Big)_T = \Big( \pdv{T}{P} \Big)_V } \\ \boxed{ \Big( \pdv{V}{\mu} \Big)_N = - \Big( \pdv{N}{P} \Big)_V } \\ \boxed{ \Big( \pdv{T}{\mu} \Big)_N = - \Big( \pdv{N}{S} \Big)_T } \end{gathered}

Gibbs free energy

The following Maxwell relations can be derived from the Gibbs free energy G(T,P,N)G(T, P, N):

2GTP=(VT)P=(SP)T=2GPT2GNP=(VN)P=(μP)N=2GPN2GTN=(μT)N=(SN)T=2GNT\begin{gathered} \mpdv{G}{T}{P} = \boxed{ \Big( \pdv{V}{T} \Big)_P = - \Big( \pdv{S}{P} \Big)_T } = \mpdv{G}{P}{T} \\ \mpdv{G}{N}{P} = \boxed{ \Big( \pdv{V}{N} \Big)_P = \Big( \pdv{\mu}{P} \Big)_N } = \mpdv{G}{P}{N} \\ \mpdv{G}{T}{N} = \boxed{ \Big( \pdv{\mu}{T} \Big)_N = - \Big( \pdv{S}{N} \Big)_T } = \mpdv{G}{N}{T} \end{gathered}

And the corresponding reciprocal relations are then given by:

(TV)P=(PS)T(NV)P=(Pμ)N(Tμ)N=(NS)T\begin{gathered} \boxed{ \Big( \pdv{T}{V} \Big)_P = - \Big( \pdv{P}{S} \Big)_T } \\ \boxed{ \Big( \pdv{N}{V} \Big)_P = \Big( \pdv{P}{\mu} \Big)_N } \\ \boxed{ \Big( \pdv{T}{\mu} \Big)_N = - \Big( \pdv{N}{S} \Big)_T } \end{gathered}

Landau potential

The following Maxwell relations can be derived from the Gibbs free energy Ω(T,V,μ)\Omega(T, V, \mu):

2ΩVT=(SV)T=(PT)V=2ΩTV2ΩμV=(Pμ)V=(NV)μ=2ΩVμ2ΩTμ=(NT)μ=(Sμ)T=2ΩμT\begin{gathered} - \mpdv{\Omega}{V}{T} = \boxed{ \Big( \pdv{S}{V} \Big)_T = \Big( \pdv{P}{T} \Big)_V } = - \mpdv{\Omega}{T}{V} \\ - \mpdv{\Omega}{\mu}{V} = \boxed{ \Big( \pdv{P}{\mu} \Big)_V = \Big( \pdv{N}{V} \Big)_\mu } = - \mpdv{\Omega}{V}{\mu} \\ - \mpdv{\Omega}{T}{\mu} = \boxed{ \Big( \pdv{N}{T} \Big)_\mu = \Big( \pdv{S}{\mu} \Big)_T } = - \mpdv{\Omega}{\mu}{T} \end{gathered}

And the corresponding reciprocal relations are then given by:

(VS)T=(TP)V(μP)V=(VN)μ(TN)μ=(μS)T\begin{gathered} \boxed{ \Big( \pdv{V}{S} \Big)_T = \Big( \pdv{T}{P} \Big)_V } \\ \boxed{ \Big( \pdv{\mu}{P} \Big)_V = \Big( \pdv{V}{N} \Big)_\mu } \\ \boxed{ \Big( \pdv{T}{N} \Big)_\mu = \Big( \pdv{\mu}{S} \Big)_T } \end{gathered}

References

  1. H. Gould, J. Tobochnik, Statistical and thermal physics, 2nd edition, Princeton.