Categories:
Mathematics ,
Physics .
Orthogonal curvilinear coordinates
In a 3D coordinate system, the isosurface of a coordinate
(i.e. the surface where that coordinate is constant while the others vary)
is known as a coordinate surface , and the intersection line
of two coordinates surfaces is called a coordinate line .
A curvilinear coordinate system is one
where at least one of the coordinate surfaces is curved:
e.g. in cylindrical coordinates, the coordinate line of r r r and z z z is a circle.
Here we limit ourselves to orthogonal systems,
where the coordinate surfaces are always perpendicular.
Examples of such orthogonal curvilinear systems are
spherical coordinates ,
polar cylindrical coordinates ,
parabolic cylindrical coordinates ,
and (trivially) Cartesian coordinates .
Scale factors and basis vectors
Given such a system with coordinates ( c 1 , c 2 , c 3 ) (c_1, c_2, c_3) ( c 1 , c 2 , c 3 ) .
Their definition lets us convert all positions
to classic Cartesian coordinates ( x , y , z ) (x, y, z) ( x , y , z )
using functions x x x , y y y and z z z :
x = x ( c 1 , c 2 , c 3 ) y = y ( c 1 , c 2 , c 3 ) z = z ( c 1 , c 2 , c 3 ) \begin{aligned}
x
&= x(c_1, c_2, c_3)
\\
y
&= y(c_1, c_2, c_3)
\\
z
&= z(c_1, c_2, c_3)
\end{aligned} x y z = x ( c 1 , c 2 , c 3 ) = y ( c 1 , c 2 , c 3 ) = z ( c 1 , c 2 , c 3 )
A useful attribute of a coordinate system is its line element d ℓ \dd{\vb{\ell}} d ℓ ,
which represents the differential element of a line in any direction.
Let e ^ x \vu{e}_x e ^ x , e ^ y \vu{e}_y e ^ y and e ^ z \vu{e}_z e ^ z be the Cartesian basis unit vectors:
d ℓ ≡ e ^ x d x + e ^ y d y + e ^ z d z \begin{aligned}
\dd{\vb{\ell}}
\equiv \vu{e}_x \dd{x} + \: \vu{e}_y \dd{y} + \: \vu{e}_z \dd{z}
\end{aligned} d ℓ ≡ e ^ x d x + e ^ y d y + e ^ z d z
The Cartesian differential elements can be rewritten
in ( c 1 , c 2 , c 3 ) (c_1, c_2, c_3) ( c 1 , c 2 , c 3 ) with the chain rule:
d ℓ = e ^ x ( ∂ x ∂ c 1 d c 1 + ∂ x ∂ c 2 d c 2 + ∂ x ∂ c 3 d c 3 ) + e ^ y ( ∂ y ∂ c 1 d c 1 + ∂ y ∂ c 2 d c 2 + ∂ y ∂ c 3 d c 3 ) + e ^ z ( ∂ z ∂ c 1 d c 1 + ∂ z ∂ c 2 d c 2 + ∂ z ∂ c 3 d c 3 ) = ( ∂ x ∂ c 1 e ^ x + ∂ y ∂ c 1 e ^ y + ∂ z ∂ c 1 e ^ z ) d c 1 + ( ∂ x ∂ c 2 e ^ x + ∂ y ∂ c 2 e ^ y + ∂ z ∂ c 2 e ^ z ) d c 2 + ( ∂ x ∂ c 3 e ^ x + ∂ y ∂ c 3 e ^ y + ∂ z ∂ c 3 e ^ z ) d c 3 \begin{aligned}
\dd{\vb{\ell}}
= \quad &\vu{e}_x \bigg( \pdv{x}{c_1} \dd{c_1} + \: \pdv{x}{c_2} \dd{c_2} + \: \pdv{x}{c_3} \dd{c_3} \!\bigg)
\\
+ \: &\vu{e}_y \bigg( \pdv{y}{c_1} \dd{c_1} + \: \pdv{y}{c_2} \dd{c_2} + \: \pdv{y}{c_3} \dd{c_3} \!\bigg)
\\
+ \: &\vu{e}_z \bigg( \pdv{z}{c_1} \dd{c_1} + \: \pdv{z}{c_2} \dd{c_2} + \: \pdv{z}{c_3} \dd{c_3} \!\bigg)
\\
= \quad &\bigg( \pdv{x}{c_1} \vu{e}_x + \pdv{y}{c_1} \vu{e}_y + \pdv{z}{c_1} \vu{e}_z \bigg) \dd{c_1}
\\
+ &\bigg( \pdv{x}{c_2} \vu{e}_x + \pdv{y}{c_2} \vu{e}_y + \pdv{z}{c_2} \vu{e}_z \bigg) \dd{c_2}
\\
+ &\bigg( \pdv{x}{c_3} \vu{e}_x + \pdv{y}{c_3} \vu{e}_y + \pdv{z}{c_3} \vu{e}_z \bigg) \dd{c_3}
\end{aligned} d ℓ = + + = + + e ^ x ( ∂ c 1 ∂ x d c 1 + ∂ c 2 ∂ x d c 2 + ∂ c 3 ∂ x d c 3 ) e ^ y ( ∂ c 1 ∂ y d c 1 + ∂ c 2 ∂ y d c 2 + ∂ c 3 ∂ y d c 3 ) e ^ z ( ∂ c 1 ∂ z d c 1 + ∂ c 2 ∂ z d c 2 + ∂ c 3 ∂ z d c 3 ) ( ∂ c 1 ∂ x e ^ x + ∂ c 1 ∂ y e ^ y + ∂ c 1 ∂ z e ^ z ) d c 1 ( ∂ c 2 ∂ x e ^ x + ∂ c 2 ∂ y e ^ y + ∂ c 2 ∂ z e ^ z ) d c 2 ( ∂ c 3 ∂ x e ^ x + ∂ c 3 ∂ y e ^ y + ∂ c 3 ∂ z e ^ z ) d c 3
From this we define the scale factors h 1 h_1 h 1 , h 2 h_2 h 2 and h 3 h_3 h 3
and local basis vectors e ^ 1 \vu{e}_1 e ^ 1 , e ^ 2 \vu{e}_2 e ^ 2 and e ^ 3 \vu{e}_3 e ^ 3 :
h 1 e ^ 1 ≡ ∂ x ∂ c 1 e ^ x + ∂ y ∂ c 1 e ^ y + ∂ z ∂ c 1 e ^ z h 2 e ^ 2 ≡ ∂ x ∂ c 2 e ^ x + ∂ y ∂ c 2 e ^ y + ∂ z ∂ c 2 e ^ z h 3 e ^ 3 ≡ ∂ x ∂ c 3 e ^ x + ∂ y ∂ c 3 e ^ y + ∂ z ∂ c 3 e ^ z \begin{aligned}
\boxed{
\begin{aligned}
h_1 \vu{e}_1
&\equiv \pdv{x}{c_1} \vu{e}_x + \pdv{y}{c_1} \vu{e}_y + \pdv{z}{c_1} \vu{e}_z
\\
h_2 \vu{e}_2
&\equiv \pdv{x}{c_2} \vu{e}_x + \pdv{y}{c_2} \vu{e}_y + \pdv{z}{c_2} \vu{e}_z
\\
h_3 \vu{e}_3
&\equiv \pdv{x}{c_3} \vu{e}_x + \pdv{y}{c_3} \vu{e}_y + \pdv{z}{c_3} \vu{e}_z
\end{aligned}
}
\end{aligned} h 1 e ^ 1 h 2 e ^ 2 h 3 e ^ 3 ≡ ∂ c 1 ∂ x e ^ x + ∂ c 1 ∂ y e ^ y + ∂ c 1 ∂ z e ^ z ≡ ∂ c 2 ∂ x e ^ x + ∂ c 2 ∂ y e ^ y + ∂ c 2 ∂ z e ^ z ≡ ∂ c 3 ∂ x e ^ x + ∂ c 3 ∂ y e ^ y + ∂ c 3 ∂ z e ^ z
Where e ^ 1 \vu{e}_1 e ^ 1 , e ^ 2 \vu{e}_2 e ^ 2 and e ^ 3 \vu{e}_3 e ^ 3 are normalized,
and orthogonal for any orthogonal curvilinear system.
They are called local basis vectors
because they generally depend on ( c 1 , c 2 , c 3 ) (c_1, c_2, c_3) ( c 1 , c 2 , c 3 ) ,
i.e. their directions vary from position to position.
Their definitions can also be inverted:
e ^ x ≡ ∂ c 1 ∂ x h 1 e ^ 1 + ∂ c 2 ∂ x h 2 e ^ 2 + ∂ c 3 ∂ x h 3 e ^ 3 e ^ y ≡ ∂ c 1 ∂ y h 1 e ^ 1 + ∂ c 2 ∂ y h 2 e ^ 2 + ∂ c 3 ∂ y h 3 e ^ 3 e ^ z ≡ ∂ c 1 ∂ z h 1 e ^ 1 + ∂ c 2 ∂ z h 2 e ^ 2 + ∂ c 3 ∂ z h 3 e ^ 3 \begin{aligned}
\boxed{
\begin{aligned}
\vu{e}_x
&\equiv \pdv{c_1}{x} h_1 \vu{e}_1 + \pdv{c_2}{x} h_2 \vu{e}_2 + \pdv{c_3}{x} h_3 \vu{e}_3
\\
\vu{e}_y
&\equiv \pdv{c_1}{y} h_1 \vu{e}_1 + \pdv{c_2}{y} h_2 \vu{e}_2 + \pdv{c_3}{y} h_3 \vu{e}_3
\\
\vu{e}_z
&\equiv \pdv{c_1}{z} h_1 \vu{e}_1 + \pdv{c_2}{z} h_2 \vu{e}_2 + \pdv{c_3}{z} h_3 \vu{e}_3
\end{aligned}
}
\end{aligned} e ^ x e ^ y e ^ z ≡ ∂ x ∂ c 1 h 1 e ^ 1 + ∂ x ∂ c 2 h 2 e ^ 2 + ∂ x ∂ c 3 h 3 e ^ 3 ≡ ∂ y ∂ c 1 h 1 e ^ 1 + ∂ y ∂ c 2 h 2 e ^ 2 + ∂ y ∂ c 3 h 3 e ^ 3 ≡ ∂ z ∂ c 1 h 1 e ^ 1 + ∂ z ∂ c 2 h 2 e ^ 2 + ∂ z ∂ c 3 h 3 e ^ 3
In the following subsections, we use the scale factors h 1 h_1 h 1 , h 2 h_2 h 2 and h 3 h_3 h 3
to derive general formulae for converting vector calculus
from Cartesian coordinates to ( c 1 , c 2 , c 3 ) (c_1, c_2, c_3) ( c 1 , c 2 , c 3 ) .
Differential elements
The point of the scale factors h 1 h_1 h 1 , h 2 h_2 h 2 and h 3 h_3 h 3 ,
as can be seen from their derivation,
is to correct for “distortions” of the coordinates compared to the Cartesian system,
such that the line element d ℓ \dd{\vb{\ell}} d ℓ retains its length.
As was already established above:
d ℓ = e ^ 1 h 1 d c 1 + e ^ 2 h 2 d c 2 + e ^ 3 h 3 d c 3 \begin{aligned}
\boxed{
\dd{\vb{\ell}}
= \vu{e}_1 h_1 \dd{c_1} + \: \vu{e}_2 h_2 \dd{c_2} + \: \vu{e}_3 h_3 \dd{c_3}
}
\end{aligned} d ℓ = e ^ 1 h 1 d c 1 + e ^ 2 h 2 d c 2 + e ^ 3 h 3 d c 3
These terms are the differentials along each of the local basis vectors.
Let us now introduce the following notation, e.g. for c 1 c_1 c 1 :
d 1 x ≡ ∂ x ∂ c 1 d c 1 = ( ∂ x ∂ c 1 e ^ x + ∂ y ∂ c 1 e ^ y + ∂ z ∂ c 1 e ^ z ) d c 1 = e ^ 1 h 1 d c 1 \begin{aligned}
\dd{}_1\!\vb{x}
\equiv \pdv{\vb{x}}{c_1} \dd{c_1}
= \Big( \pdv{x}{c_1} \vu{e}_x + \pdv{y}{c_1} \vu{e}_y + \pdv{z}{c_1} \vu{e}_z \Big) \dd{c_1}
= \vu{e}_1 h_1 \dd{c_1}
\end{aligned} d 1 x ≡ ∂ c 1 ∂ x d c 1 = ( ∂ c 1 ∂ x e ^ x + ∂ c 1 ∂ y e ^ y + ∂ c 1 ∂ z e ^ z ) d c 1 = e ^ 1 h 1 d c 1
And likewise we define d 2 x \dd{}_2\!\vb{x} d 2 x and d 3 x \dd{}_3\!\vb{x} d 3 x .
All differential elements (as found in e.g. integrals)
can be expressed in terms of d 1 x \dd{}_1\!\vb{x} d 1 x , d 2 x \dd{}_2\!\vb{x} d 2 x and d 3 x \dd{}_3\!\vb{x} d 3 x .
The differential normal vector element d S ^ \dd{\vu{S}} d S ^ in a surface integral is hence given by:
d S = d 1 x × d 2 x + d 2 x × d 3 x + d 3 x × d 1 x = ( e ^ 1 × e ^ 2 ) h 1 h 2 d c 1 d c 2 + ( e ^ 2 × e ^ 3 ) h 2 h 3 d c 2 d c 3 + ( e ^ 3 × e ^ 1 ) h 1 h 3 d c 1 d c 3 \begin{aligned}
\dd{\vb{S}}
&= \dd{}_1\!\vb{x} \cross \dd{}_2\!\vb{x} + \dd{}_2\!\vb{x} \cross \dd{}_3\!\vb{x} + \dd{}_3\!\vb{x} \cross \dd{}_1\!\vb{x}
\\
&= (\vu{e}_1 \cross \vu{e}_2) \: h_1 h_2 \dd{c_1} \dd{c_2}
+ \: (\vu{e}_2 \cross \vu{e}_3) \: h_2 h_3 \dd{c_2} \dd{c_3}
+ \: (\vu{e}_3 \cross \vu{e}_1) \: h_1 h_3 \dd{c_1} \dd{c_3}
\end{aligned} d S = d 1 x × d 2 x + d 2 x × d 3 x + d 3 x × d 1 x = ( e ^ 1 × e ^ 2 ) h 1 h 2 d c 1 d c 2 + ( e ^ 2 × e ^ 3 ) h 2 h 3 d c 2 d c 3 + ( e ^ 3 × e ^ 1 ) h 1 h 3 d c 1 d c 3
In an orthonormal basis we have
e ^ 1 × e ^ 2 = e ^ 3 \vu{e}_1 \cross \vu{e}_2 = \vu{e}_3 e ^ 1 × e ^ 2 = e ^ 3 ,
e ^ 2 × e ^ 3 = e ^ 1 \vu{e}_2 \cross \vu{e}_3 = \vu{e}_1 e ^ 2 × e ^ 3 = e ^ 1 and
e ^ 3 × e ^ 1 = e ^ 2 \vu{e}_3 \cross \vu{e}_1 = \vu{e}_2 e ^ 3 × e ^ 1 = e ^ 2 , so:
d S = e ^ 1 h 2 h 3 d c 2 d c 3 + e ^ 2 h 1 h 3 d c 1 d c 3 + e ^ 3 h 1 h 2 d c 1 d c 2 \begin{aligned}
\boxed{
\dd{\vb{S}}
= \vu{e}_1 \: h_2 h_3 \dd{c_2} \dd{c_3} + \: \vu{e}_2 \: h_1 h_3 \dd{c_1} \dd{c_3} + \: \vu{e}_3 \: h_1 h_2 \dd{c_1} \dd{c_2}
}
\end{aligned} d S = e ^ 1 h 2 h 3 d c 2 d c 3 + e ^ 2 h 1 h 3 d c 1 d c 3 + e ^ 3 h 1 h 2 d c 1 d c 2
Next, the differential volume d V \dd{V} d V
must also be corrected by the scale factors:
d V = d 1 x × d 2 x ⋅ d 3 x = ( e ^ 1 × e ^ 2 ⋅ e ^ 3 ) h 1 h 2 h 3 d c 1 d c 2 d c 3 \begin{aligned}
\dd{V}
= \dd{}_1\!\vb{x} \cross \dd{}_2\!\vb{x} \cdot \dd{}_3\!\vb{x}
= (\vu{e}_1 \cross \vu{e}_2 \cdot \vu{e}_3) \: h_1 h_2 h_3 \dd{c_1} \dd{c_2} \dd{c_3}
\end{aligned} d V = d 1 x × d 2 x ⋅ d 3 x = ( e ^ 1 × e ^ 2 ⋅ e ^ 3 ) h 1 h 2 h 3 d c 1 d c 2 d c 3
Once again e ^ 1 × e ^ 2 = e ^ 3 \vu{e}_1 \cross \vu{e}_2 = \vu{e}_3 e ^ 1 × e ^ 2 = e ^ 3 ,
so the vectors disappear from the expression, leaving:
d V = h 1 h 2 h 3 d c 1 d c 2 d c 3 \begin{aligned}
\boxed{
\dd{V}
= h_1 h_2 h_3 \dd{c_1} \dd{c_2} \dd{c_3}
}
\end{aligned} d V = h 1 h 2 h 3 d c 1 d c 2 d c 3
Basis vector derivatives
Orthonormality tells us that e ^ j ⋅ e ^ j = 1 \vu{e}_j \cdot \vu{e}_j = 1 e ^ j ⋅ e ^ j = 1 for j = 1 , 2 , 3 j = 1,2,3 j = 1 , 2 , 3 .
Differentiating with respect to c k c_k c k :
∂ ∂ c k ( e ^ j ⋅ e ^ j ) = 2 ∂ e ^ j ∂ c k ⋅ e ^ j = ∂ ∂ c k 1 = 0 \begin{aligned}
\pdv{}{c_k} (\vu{e}_j \cdot \vu{e}_j)
= 2 \pdv{\vu{e}_j}{c_k} \cdot \vu{e}_j
= \pdv{}{c_k} 1
= 0
\end{aligned} ∂ c k ∂ ( e ^ j ⋅ e ^ j ) = 2 ∂ c k ∂ e ^ j ⋅ e ^ j = ∂ c k ∂ 1 = 0
This means that the c k c_k c k -derivative of e ^ j \vu{e}_j e ^ j
will always be orthogonal to e ^ j \vu{e}_j e ^ j , for all j j j and k k k .
Indeed, the general expression for the derivative of a local basis vector is:
∂ e ^ j ∂ c k = 1 h j ∂ h k ∂ c j e ^ k − δ j k ∑ l 1 h l ∂ h j ∂ c l e ^ l \begin{aligned}
\boxed{
\pdv{\vu{e}_j}{c_k}
= \frac{1}{h_j} \pdv{h_k}{c_j} \vu{e}_k - \delta_{jk} \sum_{l} \frac{1}{h_l} \pdv{h_j}{c_l} \vu{e}_l
}
\end{aligned} ∂ c k ∂ e ^ j = h j 1 ∂ c j ∂ h k e ^ k − δ jk l ∑ h l 1 ∂ c l ∂ h j e ^ l
Where δ j k \delta_{jk} δ jk is the Kronecker delta.
For example, if j = 1 j = 1 j = 1 , writing this out gives:
∂ e ^ 1 ∂ c 1 = − 1 h 2 ∂ h 1 ∂ c 2 e ^ 2 − 1 h 3 ∂ h 1 ∂ c 3 e ^ 3 ∂ e ^ 1 ∂ c 2 = 1 h 1 ∂ h 2 ∂ c 1 e ^ 2 ∂ e ^ 1 ∂ c 3 = 1 h 1 ∂ h 3 ∂ c 1 e ^ 3 \begin{aligned}
\pdv{\vu{e}_1}{c_1}
&= - \frac{1}{h_2} \pdv{h_1}{c_2} \vu{e}_2 - \frac{1}{h_3} \pdv{h_1}{c_3} \vu{e}_3
\\
\pdv{\vu{e}_1}{c_2}
&= \frac{1}{h_1} \pdv{h_2}{c_1} \vu{e}_2
\\
\pdv{\vu{e}_1}{c_3}
&= \frac{1}{h_1} \pdv{h_3}{c_1} \vu{e}_3
\end{aligned} ∂ c 1 ∂ e ^ 1 ∂ c 2 ∂ e ^ 1 ∂ c 3 ∂ e ^ 1 = − h 2 1 ∂ c 2 ∂ h 1 e ^ 2 − h 3 1 ∂ c 3 ∂ h 1 e ^ 3 = h 1 1 ∂ c 1 ∂ h 2 e ^ 2 = h 1 1 ∂ c 1 ∂ h 3 e ^ 3
Proof
Proof.
In this proof we set j = 1 j = 1 j = 1 and k = 2 k = 2 k = 2 for clarity,
but the approach is valid for any j ≠ k j \neq k j = k .
We know the definitions of h 1 e ^ 1 h_1 \vu{e}_1 h 1 e ^ 1 and h 2 e ^ 2 h_2 \vu{e}_2 h 2 e ^ 2 ,
and that differentiations can be reordered:
∂ ∂ c 2 ( h 1 e ^ 1 ) = ∂ ∂ c 2 ∂ ∂ c 1 ( x e ^ x + y e ^ y + z e ^ z ) = ∂ ∂ c 1 ( h 2 e ^ 2 ) \begin{aligned}
\pdv{}{c_2} (h_1 \vu{e}_1)
&= \pdv{}{c_2} \pdv{}{c_1} \big( x \vu{e}_x + y \vu{e}_y + z \vu{e}_z \big)
= \pdv{}{c_1} (h_2 \vu{e}_2)
\end{aligned} ∂ c 2 ∂ ( h 1 e ^ 1 ) = ∂ c 2 ∂ ∂ c 1 ∂ ( x e ^ x + y e ^ y + z e ^ z ) = ∂ c 1 ∂ ( h 2 e ^ 2 )
Expanding this according to the product rule of differentiation:
∂ h 1 ∂ c 2 e ^ 1 + h 1 ∂ e ^ 1 ∂ c 2 = ∂ h 2 ∂ c 1 e ^ 2 + h 2 ∂ e ^ 2 ∂ c 1 \begin{aligned}
\pdv{h_1}{c_2} \vu{e}_1 + h_1 \pdv{\vu{e}_1}{c_2}
= \pdv{h_2}{c_1} \vu{e}_2 + h_2 \pdv{\vu{e}_2}{c_1}
\end{aligned} ∂ c 2 ∂ h 1 e ^ 1 + h 1 ∂ c 2 ∂ e ^ 1 = ∂ c 1 ∂ h 2 e ^ 2 + h 2 ∂ c 1 ∂ e ^ 2
We rearrange this in two different ways.
Indeed, these two equations are identical:
h 1 ∂ e ^ 1 ∂ c 2 = ∂ h 2 ∂ c 1 e ^ 2 + ( h 2 ∂ e ^ 2 ∂ c 1 − ∂ h 1 ∂ c 2 e ^ 1 ) h 2 ∂ e ^ 2 ∂ c 1 = ∂ h 1 ∂ c 2 e ^ 1 + ( h 1 ∂ e ^ 1 ∂ c 2 − ∂ h 2 ∂ c 1 e ^ 2 ) \begin{aligned}
h_1 \pdv{\vu{e}_1}{c_2}
&= \pdv{h_2}{c_1} \vu{e}_2 + \Big( h_2 \pdv{\vu{e}_2}{c_1} - \pdv{h_1}{c_2} \vu{e}_1 \Big)
\\
h_2 \pdv{\vu{e}_2}{c_1}
&= \pdv{h_1}{c_2} \vu{e}_1 + \Big( h_1 \pdv{\vu{e}_1}{c_2} - \pdv{h_2}{c_1} \vu{e}_2 \Big)
\end{aligned} h 1 ∂ c 2 ∂ e ^ 1 h 2 ∂ c 1 ∂ e ^ 2 = ∂ c 1 ∂ h 2 e ^ 2 + ( h 2 ∂ c 1 ∂ e ^ 2 − ∂ c 2 ∂ h 1 e ^ 1 ) = ∂ c 2 ∂ h 1 e ^ 1 + ( h 1 ∂ c 2 ∂ e ^ 1 − ∂ c 1 ∂ h 2 e ^ 2 )
Recall that all derivatives of e ^ j \vu{e}_j e ^ j are orthogonal to e ^ j \vu{e}_j e ^ j .
Therefore, the first equation’s right-hand side must be orthogonal to e ^ 1 \vu{e}_1 e ^ 1 ,
and the second’s to e ^ 2 \vu{e}_2 e ^ 2 .
We deduce that the parenthesized expressions
are proportional to e ^ 3 \vu{e}_3 e ^ 3 ,
and call the proportionality factors λ 123 \lambda_{123} λ 123 and λ 213 \lambda_{213} λ 213 :
h 1 ∂ e ^ 1 ∂ c 2 = ∂ h 2 ∂ c 1 e ^ 2 + λ 213 e ^ 3 h 2 ∂ e ^ 2 ∂ c 1 = ∂ h 1 ∂ c 2 e ^ 1 + λ 123 e ^ 3 \begin{aligned}
h_1 \pdv{\vu{e}_1}{c_2}
&= \pdv{h_2}{c_1} \vu{e}_2 + \lambda_{213} \vu{e}_3
\\
h_2 \pdv{\vu{e}_2}{c_1}
&= \pdv{h_1}{c_2} \vu{e}_1 + \lambda_{123} \vu{e}_3
\end{aligned} h 1 ∂ c 2 ∂ e ^ 1 h 2 ∂ c 1 ∂ e ^ 2 = ∂ c 1 ∂ h 2 e ^ 2 + λ 213 e ^ 3 = ∂ c 2 ∂ h 1 e ^ 1 + λ 123 e ^ 3
Since these equations are identical,
by comparing the definition of λ 123 \lambda_{123} λ 123 to the other side of the equation,
we see that λ 123 = λ 213 \lambda_{123} = \lambda_{213} λ 123 = λ 213 :
λ 123 e ^ 3 = h 1 ∂ e ^ 1 ∂ c 2 − ∂ h 2 ∂ c 1 e ^ 2 = h 2 ∂ e ^ 2 ∂ c 1 − ∂ h 1 ∂ c 2 e ^ 1 = λ 213 e ^ 3 \begin{aligned}
\lambda_{123} \vu{e}_3
&= h_1 \pdv{\vu{e}_1}{c_2} - \pdv{h_2}{c_1} \vu{e}_2
= h_2 \pdv{\vu{e}_2}{c_1} - \pdv{h_1}{c_2} \vu{e}_1
= \lambda_{213} \vu{e}_3
\end{aligned} λ 123 e ^ 3 = h 1 ∂ c 2 ∂ e ^ 1 − ∂ c 1 ∂ h 2 e ^ 2 = h 2 ∂ c 1 ∂ e ^ 2 − ∂ c 2 ∂ h 1 e ^ 1 = λ 213 e ^ 3
In general, λ j k l = λ k j l \lambda_{jkl} = \lambda_{kjl} λ jk l = λ kj l for j ≠ k ≠ l j \neq k \neq l j = k = l .
Next, we dot-multiply λ 123 \lambda_{123} λ 123 ’s equation by e ^ 3 \vu{e}_3 e ^ 3 ,
using that e ^ 2 ⋅ e ^ 3 = 0 \vu{e}_2 \cdot \vu{e}_3 = 0 e ^ 2 ⋅ e ^ 3 = 0
and consequently ∂ ( e ^ 2 ⋅ e ^ 3 ) / ∂ c 1 = 0 \ipdv{(\vu{e}_2 \cdot \vu{e}_3)}{c_1} = 0 ∂ ( e ^ 2 ⋅ e ^ 3 ) / ∂ c 1 = 0 :
λ 123 = h 2 ∂ e ^ 2 ∂ c 1 ⋅ e ^ 3 − ∂ h 1 ∂ c 2 e ^ 1 ⋅ e ^ 3 = h 2 ∂ e ^ 2 ∂ c 1 ⋅ e ^ 3 = − h 2 h 3 h 3 ∂ e ^ 3 ∂ c 1 ⋅ e ^ 2 = − h 2 h 3 λ 132 \begin{aligned}
\lambda_{123}
&= h_2 \pdv{\vu{e}_2}{c_1} \cdot \vu{e}_3 - \pdv{h_1}{c_2} \vu{e}_1 \cdot \vu{e}_3
= h_2 \pdv{\vu{e}_2}{c_1} \cdot \vu{e}_3
= - h_2 \frac{h_3}{h_3} \pdv{\vu{e}_3}{c_1} \cdot \vu{e}_2
= - \frac{h_2}{h_3} \lambda_{132}
\end{aligned} λ 123 = h 2 ∂ c 1 ∂ e ^ 2 ⋅ e ^ 3 − ∂ c 2 ∂ h 1 e ^ 1 ⋅ e ^ 3 = h 2 ∂ c 1 ∂ e ^ 2 ⋅ e ^ 3 = − h 2 h 3 h 3 ∂ c 1 ∂ e ^ 3 ⋅ e ^ 2 = − h 3 h 2 λ 132
In general, λ j k l = − h k λ j l k / h l \lambda_{jkl} = - h_k \lambda_{jlk} / h_l λ jk l = − h k λ j l k / h l for j ≠ k ≠ l j \neq k \neq l j = k = l .
Combining this fact with λ j k l = λ k j l \lambda_{jkl} = \lambda_{kjl} λ jk l = λ kj l gives:
λ j k l = − h k h l λ j l k = − h k h l λ l j k = h k h l h j h k λ l k j = h j h l λ k l j = − h j h l h l h j λ k j l = − λ j k l \begin{aligned}
\lambda_{jkl}
= - \frac{h_k}{h_l} \lambda_{jlk}
= - \frac{h_k}{h_l} \lambda_{ljk}
= \frac{h_k}{h_l} \frac{h_j}{h_k} \lambda_{lkj}
= \frac{h_j}{h_l} \lambda_{klj}
= - \frac{h_j}{h_l} \frac{h_l}{h_j} \lambda_{kjl}
= - \lambda_{jkl}
\end{aligned} λ jk l = − h l h k λ j l k = − h l h k λ l jk = h l h k h k h j λ l kj = h l h j λ k l j = − h l h j h j h l λ kj l = − λ jk l
But λ j k l = − λ j k l \lambda_{jkl} = -\lambda_{jkl} λ jk l = − λ jk l is only possible if λ j k l \lambda_{jkl} λ jk l is zero.
Thus λ 123 \lambda_{123} λ 123 ’s equation reduces to:
h 2 ∂ e ^ 2 ∂ c 1 = ∂ h 1 ∂ c 2 e ^ 1 ⟹ ∂ e ^ 2 ∂ c 1 = 1 h 2 ∂ h 1 ∂ c 2 e ^ 1 \begin{aligned}
h_2 \pdv{\vu{e}_2}{c_1}
&= \pdv{h_1}{c_2} \vu{e}_1
\qquad \implies \qquad
\pdv{\vu{e}_2}{c_1}
= \frac{1}{h_2} \pdv{h_1}{c_2} \vu{e}_1
\end{aligned} h 2 ∂ c 1 ∂ e ^ 2 = ∂ c 2 ∂ h 1 e ^ 1 ⟹ ∂ c 1 ∂ e ^ 2 = h 2 1 ∂ c 2 ∂ h 1 e ^ 1
This gives us the general expression for ∂ e ^ j / ∂ c k \ipdv{\vu{e}_j}{c_k} ∂ e ^ j / ∂ c k when j ≠ k j \neq k j = k ,
but what about j = k j = k j = k ?
Well, from orthogonality we know:
0 = e ^ 2 ⋅ e ^ 1 = ∂ ∂ c 1 ( e ^ 2 ⋅ e ^ 1 ) = ∂ e ^ 2 ∂ c 1 ⋅ e ^ 1 + e ^ 2 ⋅ ∂ e ^ 1 ∂ c 1 \begin{aligned}
0
= \vu{e}_2 \cdot \vu{e}_1
= \pdv{}{c_1} (\vu{e}_2 \cdot \vu{e}_1)
= \pdv{\vu{e}_2}{c_1} \cdot \vu{e}_1 + \vu{e}_2 \cdot \pdv{\vu{e}_1}{c_1}
\end{aligned} 0 = e ^ 2 ⋅ e ^ 1 = ∂ c 1 ∂ ( e ^ 2 ⋅ e ^ 1 ) = ∂ c 1 ∂ e ^ 2 ⋅ e ^ 1 + e ^ 2 ⋅ ∂ c 1 ∂ e ^ 1
We just calculated one of those terms, so this equation gives us the other:
e ^ 2 ⋅ ∂ e ^ 1 ∂ c 1 = − ∂ e ^ 2 ∂ c 1 ⋅ e ^ 1 = − 1 h 2 ∂ h 1 ∂ c 2 \begin{aligned}
\vu{e}_2 \cdot \pdv{\vu{e}_1}{c_1}
= - \pdv{\vu{e}_2}{c_1} \cdot \vu{e}_1
= - \frac{1}{h_2} \pdv{h_1}{c_2}
\end{aligned} e ^ 2 ⋅ ∂ c 1 ∂ e ^ 1 = − ∂ c 1 ∂ e ^ 2 ⋅ e ^ 1 = − h 2 1 ∂ c 2 ∂ h 1
Now we have the e ^ 2 \vu{e}_2 e ^ 2 -component of ∂ e ^ 1 / ∂ c 1 \ipdv{\vu{e}_1}{c_1} ∂ e ^ 1 / ∂ c 1 ,
and can find the e ^ 3 \vu{e}_3 e ^ 3 -component in the same way:
e ^ 3 ⋅ ∂ e ^ 1 ∂ c 1 = − ∂ e ^ 3 ∂ c 1 ⋅ e ^ 1 = − 1 h 3 ∂ h 1 ∂ c 3 \begin{aligned}
\vu{e}_3 \cdot \pdv{\vu{e}_1}{c_1}
= - \pdv{\vu{e}_3}{c_1} \cdot \vu{e}_1
= - \frac{1}{h_3} \pdv{h_1}{c_3}
\end{aligned} e ^ 3 ⋅ ∂ c 1 ∂ e ^ 1 = − ∂ c 1 ∂ e ^ 3 ⋅ e ^ 1 = − h 3 1 ∂ c 3 ∂ h 1
Adding up the e ^ 2 \vu{e}_2 e ^ 2 - and e ^ 3 \vu{e}_3 e ^ 3 -components gives the desired formula.
There is no e ^ 1 \vu{e}_1 e ^ 1 -component
because ∂ e ^ 1 / ∂ c 1 \ipdv{\vu{e}_1}{c_1} ∂ e ^ 1 / ∂ c 1 must be orthogonal to e ^ 1 \vu{e}_1 e ^ 1 .
Gradient of a scalar
The gradient ∇ f \nabla f ∇ f of a scalar field f f f
has the following components in ( c 1 , c 2 , c 3 ) (c_1, c_2, c_3) ( c 1 , c 2 , c 3 ) :
( ∇ f ) j = 1 h j ∂ f ∂ c j \begin{aligned}
\boxed{
(\nabla f)_j
= \frac{1}{h_j} \pdv{f}{c_j}
}
\end{aligned} ( ∇ f ) j = h j 1 ∂ c j ∂ f
When this index notation is written out in full,
the gradient ∇ f \nabla f ∇ f becomes:
∇ f = 1 h 1 ∂ f ∂ c 1 e ^ 1 + 1 h 2 ∂ f ∂ c 2 e ^ 2 + 1 h 3 ∂ f ∂ c 3 e ^ 3 \begin{aligned}
\nabla f
= \frac{1}{h_1} \pdv{f}{c_1} \vu{e}_1
+ \frac{1}{h_2} \pdv{f}{c_2} \vu{e}_2
+ \frac{1}{h_3} \pdv{f}{c_3} \vu{e}_3
\end{aligned} ∇ f = h 1 1 ∂ c 1 ∂ f e ^ 1 + h 2 1 ∂ c 2 ∂ f e ^ 2 + h 3 1 ∂ c 3 ∂ f e ^ 3
Proof
Proof.
For any unit vector u ^ \vu{u} u ^ , we can project ∇ f \nabla f ∇ f onto it
to get the component of ∇ f \nabla f ∇ f along u ^ \vu{u} u ^ .
Let us choose u ^ = e ^ 1 \vu{u} = \vu{e}_1 u ^ = e ^ 1 , then such a projection gives:
∇ f ⋅ e ^ 1 = ( ∂ f ∂ x e ^ x + ∂ f ∂ y e ^ y + ∂ f ∂ z e ^ z ) ⋅ 1 h 1 ( ∂ x ∂ c 1 e ^ x + ∂ y ∂ c 1 e ^ y + ∂ z ∂ c 1 e ^ z ) = 1 h 1 ( ∂ f ∂ x ∂ x ∂ c 1 + ∂ f ∂ y ∂ y ∂ c 1 + ∂ f ∂ z ∂ z ∂ c 1 ) = 1 h 1 ∂ f ∂ c 1 \begin{aligned}
\nabla f \cdot \vu{e}_1
&= \bigg( \pdv{f}{x} \vu{e}_x + \pdv{f}{y} \vu{e}_y + \pdv{f}{z} \vu{e}_z \bigg)
\cdot \frac{1}{h_1} \bigg( \pdv{x}{c_1} \vu{e}_x + \pdv{y}{c_1} \vu{e}_y + \pdv{z}{c_1} \vu{e}_z \bigg)
\\
&= \frac{1}{h_1} \bigg( \pdv{f}{x} \pdv{x}{c_1} + \pdv{f}{y} \pdv{y}{c_1} + \pdv{f}{z} \pdv{z}{c_1} \bigg)
\\
&= \frac{1}{h_1} \pdv{f}{c_1}
\end{aligned} ∇ f ⋅ e ^ 1 = ( ∂ x ∂ f e ^ x + ∂ y ∂ f e ^ y + ∂ z ∂ f e ^ z ) ⋅ h 1 1 ( ∂ c 1 ∂ x e ^ x + ∂ c 1 ∂ y e ^ y + ∂ c 1 ∂ z e ^ z ) = h 1 1 ( ∂ x ∂ f ∂ c 1 ∂ x + ∂ y ∂ f ∂ c 1 ∂ y + ∂ z ∂ f ∂ c 1 ∂ z ) = h 1 1 ∂ c 1 ∂ f
And we can do the same for e ^ 2 \vu{e}_2 e ^ 2 and e ^ 3 \vu{e}_3 e ^ 3 ,
yielding analogous results:
∇ f ⋅ e ^ 2 = 1 h 2 ∂ f ∂ c 2 ∇ f ⋅ e ^ 3 = 1 h 3 ∂ f ∂ c 3 \begin{aligned}
\nabla f \cdot \vu{e}_2
= \frac{1}{h_2} \pdv{f}{c_2}
\qquad \qquad
\nabla f \cdot \vu{e}_3
= \frac{1}{h_3} \pdv{f}{c_3}
\end{aligned} ∇ f ⋅ e ^ 2 = h 2 1 ∂ c 2 ∂ f ∇ f ⋅ e ^ 3 = h 3 1 ∂ c 3 ∂ f
Finally, to express ∇ f \nabla f ∇ f in the new coordinate system ( c 1 , c 2 , c 3 ) (c_1, c_2, c_3) ( c 1 , c 2 , c 3 ) ,
we simply combine these projections for all the basis vectors:
∇ f = ( ∇ f ⋅ e ^ 1 ) e ^ 1 + ( ∇ f ⋅ e ^ 2 ) e ^ 2 + ( ∇ f ⋅ e ^ 3 ) e ^ 3 \begin{aligned}
\nabla f
= (\nabla f \cdot \vu{e}_1) \vu{e}_1
+ (\nabla f \cdot \vu{e}_2) \vu{e}_2
+ (\nabla f \cdot \vu{e}_3) \vu{e}_3
\end{aligned} ∇ f = ( ∇ f ⋅ e ^ 1 ) e ^ 1 + ( ∇ f ⋅ e ^ 2 ) e ^ 2 + ( ∇ f ⋅ e ^ 3 ) e ^ 3
Divergence of a vector
The divergence of a vector field V = V 1 e ^ 1 + V 2 e ^ 2 + V 3 e ^ 3 \vb{V} = V_1 \vu{e}_1 + V_2 \vu{e}_2 + V_3 \vu{e}_3 V = V 1 e ^ 1 + V 2 e ^ 2 + V 3 e ^ 3
is given in ( c 1 , c 2 , c 3 ) (c_1, c_2, c_3) ( c 1 , c 2 , c 3 ) by:
∇ ⋅ V = ∑ j 1 H ∂ ∂ c j ( H V j h j ) \begin{aligned}
\boxed{
\nabla \cdot \vb{V}
= \sum_{j} \frac{1}{H} \pdv{}{c_j} \bigg( \frac{H V_j}{h_j} \bigg)
}
\end{aligned} ∇ ⋅ V = j ∑ H 1 ∂ c j ∂ ( h j H V j )
Where H ≡ h 1 h 2 h 3 H \equiv h_1 h_2 h_3 H ≡ h 1 h 2 h 3 .
When this index notation is written out in full, it becomes:
∇ ⋅ V = 1 h 1 h 2 h 3 ( ∂ ∂ c 1 ( h 2 h 3 V 1 ) + ∂ ∂ c 2 ( h 1 h 3 V 2 ) + ∂ ∂ c 3 ( h 1 h 2 V 3 ) ) \begin{aligned}
\nabla \cdot \vb{V}
= \frac{1}{h_1 h_2 h_3}
\bigg( \pdv{}{c_1} (h_2 h_3 V_1) + \pdv{}{c_2} (h_1 h_3 V_2) + \pdv{}{c_3} (h_1 h_2 V_3) \bigg)
\end{aligned} ∇ ⋅ V = h 1 h 2 h 3 1 ( ∂ c 1 ∂ ( h 2 h 3 V 1 ) + ∂ c 2 ∂ ( h 1 h 3 V 2 ) + ∂ c 3 ∂ ( h 1 h 2 V 3 ) )
Proof 1
Proof 1.
From our earlier calculation of ∇ f \nabla f ∇ f ,
we know how to express the del ∇ \nabla ∇ in ( c 1 , c 2 , c 3 ) (c_1, c_2, c_3) ( c 1 , c 2 , c 3 ) .
Now we simply take the dot product of ∇ \nabla ∇ and V \vb{V} V :
∇ ⋅ V = ( e ^ 1 1 h 1 ∂ ∂ c 1 + e ^ 2 1 h 2 ∂ ∂ c 2 + e ^ 3 1 h 3 ∂ ∂ c 3 ) ⋅ ( V 1 e ^ 1 + V 2 e ^ 2 + V 3 e ^ 3 ) = ( ∑ j e ^ j 1 h j ∂ ∂ c j ) ⋅ ( ∑ k V k e ^ k ) = ∑ j k e ^ j ⋅ 1 h j ∂ ∂ c j ( V k e ^ k ) = ∑ j k ( e ^ j ⋅ e ^ k ) 1 h j ∂ V k ∂ c j + ∑ j k ( e ^ j ⋅ ∂ e ^ k ∂ c j ) V k h j \begin{aligned}
\nabla \cdot \vb{V}
&= \bigg( \vu{e}_1 \frac{1}{h_1} \pdv{}{c_1} + \vu{e}_2 \frac{1}{h_2} \pdv{}{c_2} + \vu{e}_3 \frac{1}{h_3} \pdv{}{c_3} \bigg)
\cdot \bigg( V_1 \vu{e}_1 + V_2 \vu{e}_2 + V_3 \vu{e}_3 \bigg)
\\
&= \bigg( \sum_{j} \vu{e}_j \frac{1}{h_j} \pdv{}{c_j} \bigg) \cdot \bigg( \sum_{k} V_k \vu{e}_k \bigg)
\\
&= \sum_{jk} \vu{e}_j \cdot \frac{1}{h_j} \pdv{}{c_j} (V_k \vu{e}_k)
\\
&= \sum_{jk} (\vu{e}_j \cdot \vu{e}_k) \frac{1}{h_j} \pdv{V_k}{c_j}
+ \sum_{jk} \Big( \vu{e}_j \cdot \pdv{\vu{e}_k}{c_j} \Big) \frac{V_k}{h_j}
\end{aligned} ∇ ⋅ V = ( e ^ 1 h 1 1 ∂ c 1 ∂ + e ^ 2 h 2 1 ∂ c 2 ∂ + e ^ 3 h 3 1 ∂ c 3 ∂ ) ⋅ ( V 1 e ^ 1 + V 2 e ^ 2 + V 3 e ^ 3 ) = ( j ∑ e ^ j h j 1 ∂ c j ∂ ) ⋅ ( k ∑ V k e ^ k ) = jk ∑ e ^ j ⋅ h j 1 ∂ c j ∂ ( V k e ^ k ) = jk ∑ ( e ^ j ⋅ e ^ k ) h j 1 ∂ c j ∂ V k + jk ∑ ( e ^ j ⋅ ∂ c j ∂ e ^ k ) h j V k
Substituting our expression for the derivatives of the local basis vectors, we find:
∇ ⋅ V = ∑ j k ( e ^ j ⋅ e ^ k ) 1 h j ∂ V k ∂ c j + ∑ j k e ^ j ⋅ ( 1 h k ∂ h j ∂ c k e ^ j − δ j k ∑ l 1 h l ∂ h k ∂ c l e ^ l ) V k h j = ∑ j k ( e ^ j ⋅ e ^ k ) 1 h j ∂ V k ∂ c j + ∑ j k ( e ^ j ⋅ e ^ j ) V k h j h k ∂ h j ∂ c k − ∑ j l ( e ^ j ⋅ e ^ l ) V j h j h l ∂ h j ∂ c l = ∑ j 1 h j ∂ V j ∂ c j + ∑ j k V k h j h k ∂ h j ∂ c k − ∑ j V j h j h j ∂ h j ∂ c j = ∑ j 1 h j ∂ V j ∂ c j + ∑ j ∑ k ≠ j V k h j h k ∂ h j ∂ c k \begin{aligned}
\nabla \cdot \vb{V}
&= \sum_{jk} (\vu{e}_j \cdot \vu{e}_k) \frac{1}{h_j} \pdv{V_k}{c_j}
+ \sum_{jk} \vu{e}_j
\cdot \bigg( \frac{1}{h_k} \pdv{h_j}{c_k} \vu{e}_j - \delta_{jk} \sum_{l} \frac{1}{h_l} \pdv{h_k}{c_l} \vu{e}_l \bigg) \frac{V_k}{h_j}
\\
&= \sum_{jk} (\vu{e}_j \cdot \vu{e}_k) \frac{1}{h_j} \pdv{V_k}{c_j}
+ \sum_{jk} (\vu{e}_j \cdot \vu{e}_j) \frac{V_k}{h_j h_k} \pdv{h_j}{c_k}
- \sum_{jl} (\vu{e}_j \cdot \vu{e}_l) \frac{V_j}{h_j h_l} \pdv{h_j}{c_l}
\\
&= \sum_{j} \frac{1}{h_j} \pdv{V_j}{c_j}
+ \sum_{jk} \frac{V_k}{h_j h_k} \pdv{h_j}{c_k}
- \sum_{j} \frac{V_j}{h_j h_j} \pdv{h_j}{c_j}
\\
&= \sum_{j} \frac{1}{h_j} \pdv{V_j}{c_j}
+ \sum_{j} \sum_{k \neq j} \frac{V_k}{h_j h_k} \pdv{h_j}{c_k}
\\
\end{aligned} ∇ ⋅ V = jk ∑ ( e ^ j ⋅ e ^ k ) h j 1 ∂ c j ∂ V k + jk ∑ e ^ j ⋅ ( h k 1 ∂ c k ∂ h j e ^ j − δ jk l ∑ h l 1 ∂ c l ∂ h k e ^ l ) h j V k = jk ∑ ( e ^ j ⋅ e ^ k ) h j 1 ∂ c j ∂ V k + jk ∑ ( e ^ j ⋅ e ^ j ) h j h k V k ∂ c k ∂ h j − j l ∑ ( e ^ j ⋅ e ^ l ) h j h l V j ∂ c l ∂ h j = j ∑ h j 1 ∂ c j ∂ V j + jk ∑ h j h k V k ∂ c k ∂ h j − j ∑ h j h j V j ∂ c j ∂ h j = j ∑ h j 1 ∂ c j ∂ V j + j ∑ k = j ∑ h j h k V k ∂ c k ∂ h j
Where we noticed that the latter two terms cancel out if k = j k = j k = j .
Now, to proceed, it is easiest to just write out the index notation:
∇ ⋅ V = ∑ j 1 h j ∂ V j ∂ c j + ∑ j ∑ k ≠ j V k h j h k ∂ h j ∂ c k = 1 h 1 ∂ V 1 ∂ c 1 + V 1 h 1 h 2 ∂ h 2 ∂ c 1 + V 1 h 1 h 3 ∂ h 3 ∂ c 1 + V 2 h 1 h 2 ∂ h 1 ∂ c 2 + 1 h 2 ∂ V 2 ∂ c 2 + V 2 h 2 h 3 ∂ h 3 ∂ c 2 + V 3 h 1 h 3 ∂ h 1 ∂ c 3 + V 3 h 2 h 3 ∂ h 2 ∂ c 3 + 1 h 3 ∂ V 3 ∂ c 3 = 1 h 1 h 2 h 3 ( h 2 h 3 ∂ V 1 ∂ c 1 + h 3 V 1 ∂ h 2 ∂ c 1 + h 2 V 1 ∂ h 3 ∂ c 1 + h 3 V 2 ∂ h 1 ∂ c 2 + h 1 h 3 ∂ V 2 ∂ c 2 + h 1 V 2 ∂ h 3 ∂ c 2 + h 2 V 3 ∂ h 1 ∂ c 3 + h 1 V 3 ∂ h 2 ∂ c 3 + h 1 h 2 ∂ V 3 ∂ c 3 ) \begin{aligned}
\nabla \cdot \vb{V}
&= \sum_{j} \frac{1}{h_j} \pdv{V_j}{c_j} + \sum_{j} \sum_{k \neq j} \frac{V_k}{h_j h_k} \pdv{h_j}{c_k}
\\
&= \quad \frac{1}{h_1} \pdv{V_1}{c_1} + \frac{V_1}{h_1 h_2} \pdv{h_2}{c_1} + \frac{V_1}{h_1 h_3} \pdv{h_3}{c_1}
\\
&\quad\: + \frac{V_2}{h_1 h_2} \pdv{h_1}{c_2} + \frac{1}{h_2} \pdv{V_2}{c_2} + \frac{V_2}{h_2 h_3} \pdv{h_3}{c_2}
\\
&\quad\: + \frac{V_3}{h_1 h_3} \pdv{h_1}{c_3} + \frac{V_3}{h_2 h_3} \pdv{h_2}{c_3} + \frac{1}{h_3} \pdv{V_3}{c_3}
\\
&= \frac{1}{h_1 h_2 h_3} \bigg( h_2 h_3 \pdv{V_1}{c_1} + h_3 V_1 \pdv{h_2}{c_1} + h_2 V_1 \pdv{h_3}{c_1}
\\
&\qquad\qquad + h_3 V_2 \pdv{h_1}{c_2} + h_1 h_3 \pdv{V_2}{c_2} + h_1 V_2 \pdv{h_3}{c_2}
\\
&\qquad\qquad + h_2 V_3 \pdv{h_1}{c_3} + h_1 V_3 \pdv{h_2}{c_3} + h_1 h_2 \pdv{V_3}{c_3} \bigg)
\end{aligned} ∇ ⋅ V = j ∑ h j 1 ∂ c j ∂ V j + j ∑ k = j ∑ h j h k V k ∂ c k ∂ h j = h 1 1 ∂ c 1 ∂ V 1 + h 1 h 2 V 1 ∂ c 1 ∂ h 2 + h 1 h 3 V 1 ∂ c 1 ∂ h 3 + h 1 h 2 V 2 ∂ c 2 ∂ h 1 + h 2 1 ∂ c 2 ∂ V 2 + h 2 h 3 V 2 ∂ c 2 ∂ h 3 + h 1 h 3 V 3 ∂ c 3 ∂ h 1 + h 2 h 3 V 3 ∂ c 3 ∂ h 2 + h 3 1 ∂ c 3 ∂ V 3 = h 1 h 2 h 3 1 ( h 2 h 3 ∂ c 1 ∂ V 1 + h 3 V 1 ∂ c 1 ∂ h 2 + h 2 V 1 ∂ c 1 ∂ h 3 + h 3 V 2 ∂ c 2 ∂ h 1 + h 1 h 3 ∂ c 2 ∂ V 2 + h 1 V 2 ∂ c 2 ∂ h 3 + h 2 V 3 ∂ c 3 ∂ h 1 + h 1 V 3 ∂ c 3 ∂ h 2 + h 1 h 2 ∂ c 3 ∂ V 3 )
Which can clearly be rewritten with the product rule,
leading to the desired formula.
Boas gives an alternative proof, which is shorter but more specialized:
Proof 2
Proof 2.
We take the divergence of the c 1 c_1 c 1 -component of V \vb{V} V and expand it:
∇ ⋅ ( V 1 e ^ 1 ) = ∇ ⋅ ( ( h 2 h 3 V 1 ) ( e ^ 1 h 2 h 3 ) ) = ∇ ( h 2 h 3 V 1 ) ⋅ ( e ^ 1 h 2 h 3 ) + ( h 2 h 3 V 1 ) ( ∇ ⋅ ( e ^ 1 h 2 h 3 ) ) \begin{aligned}
\nabla \cdot (V_1 \vu{e}_1)
&= \nabla \cdot \bigg( \Big( h_2 h_3 V_1 \Big) \Big( \frac{\vu{e}_1}{h_2 h_3} \Big) \bigg)
\\
&= \nabla (h_2 h_3 V_1) \cdot \Big( \frac{\vu{e}_1}{h_2 h_3} \Big)
+ (h_2 h_3 V_1) \bigg( \nabla \cdot \Big( \frac{\vu{e}_1}{h_2 h_3} \Big) \bigg)
\end{aligned} ∇ ⋅ ( V 1 e ^ 1 ) = ∇ ⋅ ( ( h 2 h 3 V 1 ) ( h 2 h 3 e ^ 1 ) ) = ∇ ( h 2 h 3 V 1 ) ⋅ ( h 2 h 3 e ^ 1 ) + ( h 2 h 3 V 1 ) ( ∇ ⋅ ( h 2 h 3 e ^ 1 ) )
The latter term is zero, because
in any orthogonal basis e ^ 2 × e ^ 3 = e ^ 1 \vu{e}_2 \cross \vu{e}_3 = \vu{e}_1 e ^ 2 × e ^ 3 = e ^ 1 ,
and according to our gradient formula we have ∇ c 2 = e ^ 2 / h 2 \nabla c_2 = \vu{e}_2 / h_2 ∇ c 2 = e ^ 2 / h 2 etc., so:
∇ ⋅ ( e ^ 1 h 2 h 3 ) = ∇ ⋅ ( e ^ 2 h 2 × e ^ 3 h 3 ) = ∇ ⋅ ( ∇ c 2 × ∇ c 3 ) = ∇ c 3 ⋅ ( ∇ × ∇ c 2 ) − ∇ c 2 ⋅ ( ∇ × ∇ c 3 ) = 0 \begin{aligned}
\nabla \cdot \bigg( \frac{\vu{e}_1}{h_2 h_3} \bigg)
&= \nabla \cdot \bigg( \frac{\vu{e}_2}{h_2} \cross \frac{\vu{e}_3}{h_3} \bigg)
\\
&= \nabla \cdot \big( \nabla c_2 \cross \nabla c_3 \big)
\\
&= \nabla c_3 \cdot (\nabla \cross \nabla c_2) - \nabla c_2 \cdot (\nabla \cross \nabla c_3)
\\
&= 0
\end{aligned} ∇ ⋅ ( h 2 h 3 e ^ 1 ) = ∇ ⋅ ( h 2 e ^ 2 × h 3 e ^ 3 ) = ∇ ⋅ ( ∇ c 2 × ∇ c 3 ) = ∇ c 3 ⋅ ( ∇ × ∇ c 2 ) − ∇ c 2 ⋅ ( ∇ × ∇ c 3 ) = 0
Where we used a vector identity and the fact that the curl of a gradient must vanish.
We are thus left with the former term,
to which we apply our gradient formula again,
where only the e ^ 1 \vu{e}_1 e ^ 1 -term survives due to the dot product and orthogonality:
∇ ⋅ ( V 1 e ^ 1 ) = ∇ ( h 2 h 3 V 1 ) ⋅ e ^ 1 h 2 h 3 = 1 h 1 h 2 h 3 ∂ ∂ c 1 ( h 2 h 3 V 1 ) \begin{aligned}
\nabla \cdot (V_1 \vu{e}_1)
&= \nabla (h_2 h_3 V_1) \cdot \frac{\vu{e}_1}{h_2 h_3}
\\
&= \frac{1}{h_1 h_2 h_3} \pdv{}{c_1} (h_2 h_3 V_1)
\end{aligned} ∇ ⋅ ( V 1 e ^ 1 ) = ∇ ( h 2 h 3 V 1 ) ⋅ h 2 h 3 e ^ 1 = h 1 h 2 h 3 1 ∂ c 1 ∂ ( h 2 h 3 V 1 )
We then repeat this procedure for V \vb{V} V ’s other components,
and simply add up the results to get the desired formula.
Curl of a vector
The curl of a vector field V \vb{V} V has the following components in ( c 1 , c 2 , c 3 ) (c_1, c_2, c_3) ( c 1 , c 2 , c 3 ) ,
where ε j k l \varepsilon_{j k l} ε jk l is the Levi-Civita symbol in 3D:
( ∇ × V ) j = ∑ k l ε j k l h k h l ∂ ∂ c k ( h l V l ) \begin{aligned}
\boxed{
\begin{aligned}
(\nabla \cross \vb{V})_j
= \sum_{k l} \frac{\varepsilon_{j k l}}{h_k h_l} \pdv{}{c_k} (h_l V_l)
\end{aligned}
}
\end{aligned} ( ∇ × V ) j = k l ∑ h k h l ε jk l ∂ c k ∂ ( h l V l )
When this index notation is written out in full,
the curl ∇ × V \nabla \cross \vb{V} ∇ × V becomes:
∇ × V = 1 h 2 h 3 ( ∂ ( h 3 V 3 ) ∂ c 2 − ∂ ( h 2 V 2 ) ∂ c 3 ) e ^ 1 + 1 h 1 h 3 ( ∂ ( h 1 V 1 ) ∂ c 3 − ∂ ( h 3 V 3 ) ∂ c 1 ) e ^ 2 + 1 h 1 h 2 ( ∂ ( h 2 V 2 ) ∂ c 1 − ∂ ( h 1 V 1 ) ∂ c 2 ) e ^ 3 \begin{aligned}
\nabla \times \vb{V}
= \quad\: &\frac{1}{h_2 h_3} \bigg( \pdv{(h_3 V_3)}{c_2} - \pdv{(h_2 V_2)}{c_3} \bigg) \vu{e}_1
\\
+ \: &\frac{1}{h_1 h_3} \bigg( \pdv{(h_1 V_1)}{c_3} - \pdv{(h_3 V_3)}{c_1} \bigg) \vu{e}_2
\\
+ \: &\frac{1}{h_1 h_2} \bigg( \pdv{(h_2 V_2)}{c_1} - \pdv{(h_1 V_1)}{c_2} \bigg) \vu{e}_3
\end{aligned} ∇ × V = + + h 2 h 3 1 ( ∂ c 2 ∂ ( h 3 V 3 ) − ∂ c 3 ∂ ( h 2 V 2 ) ) e ^ 1 h 1 h 3 1 ( ∂ c 3 ∂ ( h 1 V 1 ) − ∂ c 1 ∂ ( h 3 V 3 ) ) e ^ 2 h 1 h 2 1 ( ∂ c 1 ∂ ( h 2 V 2 ) − ∂ c 2 ∂ ( h 1 V 1 ) ) e ^ 3
Proof 1
Proof 1.
From our earlier calculation of ∇ f \nabla f ∇ f ,
we know how to express the del ∇ \nabla ∇ in ( c 1 , c 2 , c 3 ) (c_1, c_2, c_3) ( c 1 , c 2 , c 3 ) .
Now we simply take the cross product of ∇ \nabla ∇ and V \vb{V} V :
∇ × V = ( e ^ 1 1 h 1 ∂ ∂ c 1 + e ^ 2 1 h 2 ∂ ∂ c 2 + e ^ 3 1 h 3 ∂ ∂ c 3 ) × ( V 1 e ^ 1 + V 2 e ^ 2 + V 3 e ^ 3 ) = ( ∑ j e ^ j 1 h j ∂ ∂ c j ) × ( ∑ k V k e ^ k ) = ∑ j k e ^ j × 1 h j ∂ ∂ c j ( V k e ^ k ) = ∑ j k 1 h j ∂ V k ∂ c j ( e ^ j × e ^ k ) + ∑ j k V k h j ( e ^ j × ∂ e ^ k ∂ c j ) \begin{aligned}
\nabla \cross \vb{V}
&= \bigg( \vu{e}_1 \frac{1}{h_1} \pdv{}{c_1} + \vu{e}_2 \frac{1}{h_2} \pdv{}{c_2} + \vu{e}_3 \frac{1}{h_3} \pdv{}{c_3} \bigg)
\cross \bigg( V_1 \vu{e}_1 + V_2 \vu{e}_2 + V_3 \vu{e}_3 \bigg)
\\
&= \bigg( \sum_{j} \vu{e}_j \frac{1}{h_j} \pdv{}{c_j} \bigg) \cross \bigg( \sum_{k} V_k \vu{e}_k \bigg)
\\
&= \sum_{jk} \vu{e}_j \cross \frac{1}{h_j} \pdv{}{c_j} (V_k \vu{e}_k)
\\
&= \sum_{jk} \frac{1}{h_j} \pdv{V_k}{c_j} (\vu{e}_j \cross \vu{e}_k)
+ \sum_{jk} \frac{V_k}{h_j} \Big( \vu{e}_j \cross \pdv{\vu{e}_k}{c_j} \Big)
\end{aligned} ∇ × V = ( e ^ 1 h 1 1 ∂ c 1 ∂ + e ^ 2 h 2 1 ∂ c 2 ∂ + e ^ 3 h 3 1 ∂ c 3 ∂ ) × ( V 1 e ^ 1 + V 2 e ^ 2 + V 3 e ^ 3 ) = ( j ∑ e ^ j h j 1 ∂ c j ∂ ) × ( k ∑ V k e ^ k ) = jk ∑ e ^ j × h j 1 ∂ c j ∂ ( V k e ^ k ) = jk ∑ h j 1 ∂ c j ∂ V k ( e ^ j × e ^ k ) + jk ∑ h j V k ( e ^ j × ∂ c j ∂ e ^ k )
Substituting our expression for the derivatives of the local basis vectors, we find:
∇ × V = ∑ j k 1 h j ∂ V k ∂ c j ( e ^ j × e ^ k ) + ∑ j k V k h j e ^ j × ( 1 h k ∂ h j ∂ c k e ^ j − δ j k ∑ l 1 h l ∂ h k ∂ c l e ^ l ) = ∑ j k 1 h j ∂ V k ∂ c j ( e ^ j × e ^ k ) + ∑ j k V k h j h k ∂ h j ∂ c k ( e ^ j × e ^ j ) − ∑ j l V j h j h l ∂ h j ∂ c l ( e ^ j × e ^ l ) = ∑ j k 1 h j ∂ V k ∂ c j ( e ^ j × e ^ k ) − ∑ j l V j h j h l ∂ h j ∂ c l ( e ^ j × e ^ l ) \begin{aligned}
\nabla \cross \vb{V}
&= \sum_{jk} \frac{1}{h_j} \pdv{V_k}{c_j} (\vu{e}_j \cross \vu{e}_k)
+ \sum_{jk} \frac{V_k}{h_j} \vu{e}_j
\cross \bigg( \frac{1}{h_k} \pdv{h_j}{c_k} \vu{e}_j - \delta_{jk} \sum_{l} \frac{1}{h_l} \pdv{h_k}{c_l} \vu{e}_l \bigg)
\\
&= \sum_{jk} \frac{1}{h_j} \pdv{V_k}{c_j} (\vu{e}_j \cross \vu{e}_k)
+ \sum_{jk} \frac{V_k}{h_j h_k} \pdv{h_j}{c_k} (\vu{e}_j \cross \vu{e}_j)
- \sum_{jl} \frac{V_j}{h_j h_l} \pdv{h_j}{c_l} (\vu{e}_j \cross \vu{e}_l)
\\
&= \sum_{jk} \frac{1}{h_j} \pdv{V_k}{c_j} (\vu{e}_j \cross \vu{e}_k)
- \sum_{jl} \frac{V_j}{h_j h_l} \pdv{h_j}{c_l} (\vu{e}_j \cross \vu{e}_l)
\end{aligned} ∇ × V = jk ∑ h j 1 ∂ c j ∂ V k ( e ^ j × e ^ k ) + jk ∑ h j V k e ^ j × ( h k 1 ∂ c k ∂ h j e ^ j − δ jk l ∑ h l 1 ∂ c l ∂ h k e ^ l ) = jk ∑ h j 1 ∂ c j ∂ V k ( e ^ j × e ^ k ) + jk ∑ h j h k V k ∂ c k ∂ h j ( e ^ j × e ^ j ) − j l ∑ h j h l V j ∂ c l ∂ h j ( e ^ j × e ^ l ) = jk ∑ h j 1 ∂ c j ∂ V k ( e ^ j × e ^ k ) − j l ∑ h j h l V j ∂ c l ∂ h j ( e ^ j × e ^ l )
Because the cross product of a vector with itself is always zero.
Now, in an orthonormal basis we have
e ^ 1 × e ^ 2 = e ^ 3 \vu{e}_1 \cross \vu{e}_2 = \vu{e}_3 e ^ 1 × e ^ 2 = e ^ 3 ,
e ^ 2 × e ^ 3 = e ^ 1 \vu{e}_2 \cross \vu{e}_3 = \vu{e}_1 e ^ 2 × e ^ 3 = e ^ 1 and
e ^ 3 × e ^ 1 = e ^ 2 \vu{e}_3 \cross \vu{e}_1 = \vu{e}_2 e ^ 3 × e ^ 1 = e ^ 2 .
This is written in index notation by summing over l l l
and multiplying by the Levi-Civita symbol ε j k l \varepsilon_{jkl} ε jk l :
∇ × V = ∑ j k ( 1 h j ∂ V k ∂ c j − V j h j h k ∂ h j ∂ c k ) ( e ^ j × e ^ k ) = ∑ j k l ε j k l ( 1 h j ∂ V k ∂ c j − V j h j h k ∂ h j ∂ c k ) e ^ l = ∑ j k l ε j k l ( 1 h j h k h k ∂ V k ∂ c j + V k h j h k ∂ h k ∂ c j ) e ^ l = ∑ j k l ε j k l ( 1 h j h k ∂ ∂ c j ( h k V k ) ) e ^ l \begin{aligned}
\nabla \cross \vb{V}
&= \sum_{jk} \bigg( \frac{1}{h_j} \pdv{V_k}{c_j} - \frac{V_j}{h_j h_k} \pdv{h_j}{c_k} \bigg) (\vu{e}_j \cross \vu{e}_k)
\\
&= \sum_{jkl} \varepsilon_{jkl} \bigg( \frac{1}{h_j} \pdv{V_k}{c_j} - \frac{V_j}{h_j h_k} \pdv{h_j}{c_k} \bigg) \vu{e}_l
\\
&= \sum_{jkl} \varepsilon_{jkl} \bigg( \frac{1}{h_j} \frac{h_k}{h_k} \pdv{V_k}{c_j} + \frac{V_k}{h_j h_k} \pdv{h_k}{c_j} \bigg) \vu{e}_l
\\
&= \sum_{jkl} \varepsilon_{jkl} \bigg( \frac{1}{h_j h_k} \pdv{}{c_j} (h_k V_k) \bigg) \vu{e}_l
\end{aligned} ∇ × V = jk ∑ ( h j 1 ∂ c j ∂ V k − h j h k V j ∂ c k ∂ h j ) ( e ^ j × e ^ k ) = jk l ∑ ε jk l ( h j 1 ∂ c j ∂ V k − h j h k V j ∂ c k ∂ h j ) e ^ l = jk l ∑ ε jk l ( h j 1 h k h k ∂ c j ∂ V k + h j h k V k ∂ c j ∂ h k ) e ^ l = jk l ∑ ε jk l ( h j h k 1 ∂ c j ∂ ( h k V k ) ) e ^ l
Where we have used that ε j k l = − ε k j l \varepsilon_{jkl} = -\varepsilon_{kjl} ε jk l = − ε kj l ,
thereby arriving at the desired formula.
Boas gives an alternative proof, which is shorter but more specialized:
Proof 2
Proof 2.
We take the curl of the c 1 c_1 c 1 -component of V \vb{V} V and apply the product rule:
∇ × ( V 1 e ^ 1 ) = ∇ × ( ( h 1 V 1 ) ( e ^ 1 h 1 ) ) = ∇ ( h 1 V 1 ) × ( e ^ 1 h 1 ) + ( h 1 V 1 ) ( ∇ × e ^ 1 h 1 ) \begin{aligned}
\nabla \cross (V_1 \vu{e}_1)
&= \nabla \cross \bigg( \Big( h_1 V_1 \Big) \Big( \frac{\vu{e}_1}{h_1} \Big) \bigg)
\\
&= \nabla (h_1 V_1) \cross \Big( \frac{\vu{e}_1}{h_1} \Big) + (h_1 V_1) \Big( \nabla \cross \frac{\vu{e}_1}{h_1} \Big)
\end{aligned} ∇ × ( V 1 e ^ 1 ) = ∇ × ( ( h 1 V 1 ) ( h 1 e ^ 1 ) ) = ∇ ( h 1 V 1 ) × ( h 1 e ^ 1 ) + ( h 1 V 1 ) ( ∇ × h 1 e ^ 1 )
The latter term disappears, because ∇ c 1 = e ^ 1 / h 1 \nabla c_1 = \vu{e}_1 / h_1 ∇ c 1 = e ^ 1 / h 1
and the curl of a gradient is always zero.
Applying our gradient formula to the remaining term, we find:
∇ × ( V 1 e ^ 1 ) = ∇ ( h 1 V 1 ) × ( e ^ 1 h 1 ) = ( 1 h 1 ∂ ( h 1 V 1 ) ∂ c 1 e ^ 1 + 1 h 2 ∂ ( h 1 V 1 ) ∂ c 2 e ^ 2 + 1 h 3 ∂ ( h 1 V 1 ) ∂ c 3 e ^ 3 ) × ( e ^ 1 h 1 ) = 0 − 1 h 1 h 2 ∂ ( h 1 V 1 ) ∂ c 2 e ^ 3 + 1 h 1 h 3 ∂ ( h 1 V 1 ) ∂ c 3 e ^ 2 \begin{aligned}
\nabla \cross (V_1 \vu{e}_1)
&= \nabla (h_1 V_1) \cross \Big( \frac{\vu{e}_1}{h_1} \Big)
\\
&= \bigg( \frac{1}{h_1} \pdv{(h_1 V_1)}{c_1} \vu{e}_1
+ \frac{1}{h_2} \pdv{(h_1 V_1)}{c_2} \vu{e}_2
+ \frac{1}{h_3} \pdv{(h_1 V_1)}{c_3} \vu{e}_3 \bigg)
\cross \Big( \frac{\vu{e}_1}{h_1} \Big)
\\
&= 0 - \frac{1}{h_1 h_2} \pdv{(h_1 V_1)}{c_2} \vu{e}_3 + \frac{1}{h_1 h_3} \pdv{(h_1 V_1)}{c_3} \vu{e}_2
\end{aligned} ∇ × ( V 1 e ^ 1 ) = ∇ ( h 1 V 1 ) × ( h 1 e ^ 1 ) = ( h 1 1 ∂ c 1 ∂ ( h 1 V 1 ) e ^ 1 + h 2 1 ∂ c 2 ∂ ( h 1 V 1 ) e ^ 2 + h 3 1 ∂ c 3 ∂ ( h 1 V 1 ) e ^ 3 ) × ( h 1 e ^ 1 ) = 0 − h 1 h 2 1 ∂ c 2 ∂ ( h 1 V 1 ) e ^ 3 + h 1 h 3 1 ∂ c 3 ∂ ( h 1 V 1 ) e ^ 2
Where we have used the fact that e ^ 1 \vu{e}_1 e ^ 1 , e ^ 2 \vu{e}_2 e ^ 2 and e ^ 3 \vu{e}_3 e ^ 3
are related to each other by cross products thanks to orthonormality,
e.g. e ^ 2 × e ^ 3 = e ^ 1 \vu{e}_2 \cross \vu{e}_3 = \vu{e}_1 e ^ 2 × e ^ 3 = e ^ 1 .
We then repeat this procedure for V \vb{V} V ’s other components,
and simply add up the results to get the desired formula.
Laplacian of a scalar
The Laplacian ∇ 2 f \nabla^2 f ∇ 2 f of a scalar field f f f
is calculated as follows in ( c 1 , c 2 , c 3 ) (c_1, c_2, c_3) ( c 1 , c 2 , c 3 ) :
∇ 2 f = ∑ j 1 H ∂ ∂ c j ( H h j 2 ∂ f ∂ c j ) \begin{aligned}
\boxed{
\nabla^2 f
= \sum_{j} \frac{1}{H} \pdv{}{c_j} \bigg( \frac{H}{h_j^2} \pdv{f}{c_j} \bigg)
}
\end{aligned} ∇ 2 f = j ∑ H 1 ∂ c j ∂ ( h j 2 H ∂ c j ∂ f )
Where H ≡ h 1 h 2 h 3 H \equiv h_1 h_2 h_3 H ≡ h 1 h 2 h 3 .
When this index notation is written out in full, it becomes:
∇ 2 f = 1 h 1 h 2 h 3 ( ∂ ∂ c 1 ( h 2 h 3 h 1 ∂ f ∂ c 1 ) + ∂ ∂ c 2 ( h 1 h 3 h 2 ∂ f ∂ c 2 ) + ∂ ∂ c 3 ( h 1 h 2 h 3 ∂ f ∂ c 3 ) ) \begin{aligned}
\nabla^2 f
= \frac{1}{h_1 h_2 h_3} \bigg( \pdv{}{c_1} \Big( \frac{h_2 h_3}{h_1} \pdv{f}{c_1} \Big)
+ \pdv{}{c_2} \Big( \frac{h_1 h_3}{h_2} \pdv{f}{c_2} \Big)
+ \pdv{}{c_3} \Big( \frac{h_1 h_2}{h_3} \pdv{f}{c_3} \Big) \bigg)
\end{aligned} ∇ 2 f = h 1 h 2 h 3 1 ( ∂ c 1 ∂ ( h 1 h 2 h 3 ∂ c 1 ∂ f ) + ∂ c 2 ∂ ( h 2 h 1 h 3 ∂ c 2 ∂ f ) + ∂ c 3 ∂ ( h 3 h 1 h 2 ∂ c 3 ∂ f ) )
This is trivial to prove: ∇ 2 f = ∇ ⋅ ( ∇ f ) \nabla^2 f = \nabla \cdot (\nabla f) ∇ 2 f = ∇ ⋅ ( ∇ f ) ,
so combining our previous formulae is enough.
Gradient of a divergence
The gradient of a divergence ∇ ( ∇ ⋅ V ) \nabla (\nabla \cdot \vb{V}) ∇ ( ∇ ⋅ V )
has the following components in ( c 1 , c 2 , c 3 ) (c_1, c_2, c_3) ( c 1 , c 2 , c 3 ) :
( ∇ ( ∇ ⋅ V ) ) j = 1 h j ∂ ∂ c j ( ∑ k 1 H ∂ ∂ c k ( H V k h k ) ) \begin{aligned}
\boxed{
\big( \nabla (\nabla \cdot \vb{V}) \big)_j
= \frac{1}{h_j} \pdv{}{c_j} \bigg( \sum_{k} \frac{1}{H} \pdv{}{c_k} \Big( \frac{H V_k}{h_k} \Big) \bigg)
}
\end{aligned} ( ∇ ( ∇ ⋅ V ) ) j = h j 1 ∂ c j ∂ ( k ∑ H 1 ∂ c k ∂ ( h k H V k ) )
Where H ≡ h 1 h 2 h 3 H \equiv h_1 h_2 h_3 H ≡ h 1 h 2 h 3 .
This is trivial to prove: ∇ ⋅ V \nabla \cdot \vb{V} ∇ ⋅ V is a scalar,
which we insert into our gradient formula.
We no longer write out the index notation,
as the formulae become quite long.
Gradient of a vector
It also possible to take the gradient of a vector
V = V 1 e ^ 1 + V 2 e ^ 2 + V 3 e ^ 3 \vb{V} = V_1 \vu{e}_1 + V_2 \vu{e}_2 + V_3 \vu{e}_3 V = V 1 e ^ 1 + V 2 e ^ 2 + V 3 e ^ 3 ,
yielding a 2nd-order tensor with the following components
in ( c 1 , c 2 , c 3 ) (c_1, c_2, c_3) ( c 1 , c 2 , c 3 ) , for j ≠ k j \neq k j = k :
( ∇ V ) j j = 1 h j ∂ V j ∂ c j + ∑ k ≠ j V k h j h k ∂ h j ∂ c k ( ∇ V ) j k = 1 h j ∂ V k ∂ c j − V j h j h k ∂ h j ∂ c k \begin{aligned}
\boxed{
\begin{aligned}
(\nabla \vb{V})_{jj}
&= \frac{1}{h_j} \pdv{V_j}{c_j} + \sum_{k \neq j} \frac{V_k}{h_j h_k} \pdv{h_j}{c_k}
\\
(\nabla \vb{V})_{jk}
&= \frac{1}{h_j} \pdv{V_k}{c_j} - \frac{V_j}{h_j h_k} \pdv{h_j}{c_k}
\end{aligned}
}
\end{aligned} ( ∇ V ) jj ( ∇ V ) jk = h j 1 ∂ c j ∂ V j + k = j ∑ h j h k V k ∂ c k ∂ h j = h j 1 ∂ c j ∂ V k − h j h k V j ∂ c k ∂ h j
Proof
Proof.
From our earlier calculation of ∇ f \nabla f ∇ f ,
we know how to express the del ∇ \nabla ∇ in ( c 1 , c 2 , c 3 ) (c_1, c_2, c_3) ( c 1 , c 2 , c 3 ) .
Now we simply take the dyadic product of ∇ \nabla ∇ and V \vb{V} V :
∇ V = ( e ^ 1 1 h 1 ∂ ∂ c 1 + e ^ 2 1 h 2 ∂ ∂ c 2 + e ^ 3 1 h 3 ∂ ∂ c 3 ) ( V 1 e ^ 1 + V 2 e ^ 2 + V 3 e ^ 3 ) = ( ∑ j e ^ j 1 h j ∂ ∂ c j ) ( ∑ k V k e ^ k ) = ∑ j k e ^ j 1 h j ∂ ∂ c j ( V k e ^ k ) = ∑ j k 1 h j ∂ V k ∂ c j e ^ j e ^ k + ∑ j k V k h j e ^ j ∂ e ^ k ∂ c j \begin{aligned}
\nabla \vb{V}
&= \bigg( \vu{e}_1 \frac{1}{h_1} \pdv{}{c_1} + \vu{e}_2 \frac{1}{h_2} \pdv{}{c_2} + \vu{e}_3 \frac{1}{h_3} \pdv{}{c_3} \bigg)
\bigg( V_1 \vu{e}_1 + V_2 \vu{e}_2 + V_3 \vu{e}_3 \bigg)
\\
&= \bigg( \sum_{j} \vu{e}_j \frac{1}{h_j} \pdv{}{c_j} \bigg) \bigg( \sum_{k} V_k \vu{e}_k \bigg)
\\
&= \sum_{jk} \vu{e}_j \frac{1}{h_j} \pdv{}{c_j} (V_k \vu{e}_k)
\\
&= \sum_{jk} \frac{1}{h_j} \pdv{V_k}{c_j} \vu{e}_j \vu{e}_k + \sum_{jk} \frac{V_k}{h_j} \vu{e}_j \pdv{\vu{e}_k}{c_j}
\end{aligned} ∇ V = ( e ^ 1 h 1 1 ∂ c 1 ∂ + e ^ 2 h 2 1 ∂ c 2 ∂ + e ^ 3 h 3 1 ∂ c 3 ∂ ) ( V 1 e ^ 1 + V 2 e ^ 2 + V 3 e ^ 3 ) = ( j ∑ e ^ j h j 1 ∂ c j ∂ ) ( k ∑ V k e ^ k ) = jk ∑ e ^ j h j 1 ∂ c j ∂ ( V k e ^ k ) = jk ∑ h j 1 ∂ c j ∂ V k e ^ j e ^ k + jk ∑ h j V k e ^ j ∂ c j ∂ e ^ k
Substituting our expression for the derivatives of the local basis vectors, we find:
∇ V = ∑ j k 1 h j ∂ V k ∂ c j e ^ j e ^ k + ∑ j k V k h j e ^ j ( 1 h k ∂ h j ∂ c k e ^ j − δ j k ∑ l 1 h l ∂ h k ∂ c l e ^ l ) = ∑ j k 1 h j ∂ V k ∂ c j e ^ j e ^ k + ∑ j k V k h j h k ∂ h j ∂ c k e ^ j e ^ j − ∑ j l V j h j h l ∂ h j ∂ c l e ^ j e ^ l = ∑ j k ( 1 h j ∂ V k ∂ c j e ^ j e ^ k + V k h j h k ∂ h j ∂ c k e ^ j e ^ j − V j h j h k ∂ h j ∂ c k e ^ j e ^ k ) \begin{aligned}
\nabla \vb{V}
&= \sum_{jk} \frac{1}{h_j} \pdv{V_k}{c_j} \vu{e}_j \vu{e}_k
+ \sum_{jk} \frac{V_k}{h_j} \vu{e}_j \bigg( \frac{1}{h_k} \pdv{h_j}{c_k} \vu{e}_j - \delta_{jk} \sum_{l} \frac{1}{h_l} \pdv{h_k}{c_l} \vu{e}_l \bigg)
\\
&= \sum_{jk} \frac{1}{h_j} \pdv{V_k}{c_j} \vu{e}_j \vu{e}_k
+ \sum_{jk} \frac{V_k}{h_j h_k} \pdv{h_j}{c_k} \vu{e}_j \vu{e}_j
- \sum_{jl} \frac{V_j}{h_j h_l} \pdv{h_j}{c_l} \vu{e}_j \vu{e}_l
\\
&= \sum_{jk} \bigg( \frac{1}{h_j} \pdv{V_k}{c_j} \vu{e}_j \vu{e}_k
+ \frac{V_k}{h_j h_k} \pdv{h_j}{c_k} \vu{e}_j \vu{e}_j
- \frac{V_j}{h_j h_k} \pdv{h_j}{c_k} \vu{e}_j \vu{e}_k \bigg)
\end{aligned} ∇ V = jk ∑ h j 1 ∂ c j ∂ V k e ^ j e ^ k + jk ∑ h j V k e ^ j ( h k 1 ∂ c k ∂ h j e ^ j − δ jk l ∑ h l 1 ∂ c l ∂ h k e ^ l ) = jk ∑ h j 1 ∂ c j ∂ V k e ^ j e ^ k + jk ∑ h j h k V k ∂ c k ∂ h j e ^ j e ^ j − j l ∑ h j h l V j ∂ c l ∂ h j e ^ j e ^ l = jk ∑ ( h j 1 ∂ c j ∂ V k e ^ j e ^ k + h j h k V k ∂ c k ∂ h j e ^ j e ^ j − h j h k V j ∂ c k ∂ h j e ^ j e ^ k )
This is a 2nd-order tensor, whose diagonal components ( ∇ V ) l l (\nabla \vb{V})_{ll} ( ∇ V ) ll are given by:
( ∇ V ) l l = e ^ l ⋅ ( ∇ V ) ⋅ e ^ l = ∑ j k 1 h j ∂ V k ∂ c j δ j l δ k l + ∑ j k V k h j h k ∂ h j ∂ c k δ j l δ j l − ∑ j k V j h j h k ∂ h j ∂ c k δ j l δ k l = 1 h l ∂ V l ∂ c l + ∑ k V k h l h k ∂ h l ∂ c k − V l h l h l ∂ h l ∂ c l = 1 h l ∂ V l ∂ c l + ∑ k ≠ l V k h l h k ∂ h l ∂ c k \begin{aligned}
(\nabla \vb{V})_{ll}
&= \vu{e}_l \cdot (\nabla \vb{V}) \cdot \vu{e}_l
\\
&= \sum_{jk} \frac{1}{h_j} \pdv{V_k}{c_j} \delta_{jl} \delta_{kl}
+ \sum_{jk} \frac{V_k}{h_j h_k} \pdv{h_j}{c_k} \delta_{jl} \delta_{jl}
- \sum_{jk} \frac{V_j}{h_j h_k} \pdv{h_j}{c_k} \delta_{jl} \delta_{kl}
\\
&= \frac{1}{h_l} \pdv{V_l}{c_l} + \sum_{k} \frac{V_k}{h_l h_k} \pdv{h_l}{c_k} - \frac{V_l}{h_l h_l} \pdv{h_l}{c_l}
\\
&= \frac{1}{h_l} \pdv{V_l}{c_l} + \sum_{k \neq l} \frac{V_k}{h_l h_k} \pdv{h_l}{c_k}
\end{aligned} ( ∇ V ) ll = e ^ l ⋅ ( ∇ V ) ⋅ e ^ l = jk ∑ h j 1 ∂ c j ∂ V k δ j l δ k l + jk ∑ h j h k V k ∂ c k ∂ h j δ j l δ j l − jk ∑ h j h k V j ∂ c k ∂ h j δ j l δ k l = h l 1 ∂ c l ∂ V l + k ∑ h l h k V k ∂ c k ∂ h l − h l h l V l ∂ c l ∂ h l = h l 1 ∂ c l ∂ V l + k = l ∑ h l h k V k ∂ c k ∂ h l
Meanwhile, the off-diagonal components ( ∇ V ) l m (\nabla \vb{V})_{lm} ( ∇ V ) l m are as follows, with l ≠ m l \neq m l = m :
( ∇ V ) l m = e ^ l ⋅ ( ∇ V ) ⋅ e ^ m = ∑ j k 1 h j ∂ V k ∂ c j δ j l δ k m + ∑ j k V k h j h k ∂ h j ∂ c k δ j l δ j m − ∑ j k V j h j h k ∂ h j ∂ c k δ j l δ k m = 1 h l ∂ V m ∂ c l + ∑ k V k h l h k ∂ h l ∂ c k δ l m − V l h l h m ∂ h l ∂ c m = 1 h l ∂ V m ∂ c l − V l h l h m ∂ h l ∂ c m \begin{aligned}
(\nabla \vb{V})_{lm}
&= \vu{e}_l \cdot (\nabla \vb{V}) \cdot \vu{e}_m
\\
&= \sum_{jk} \frac{1}{h_j} \pdv{V_k}{c_j} \delta_{jl} \delta_{km}
+ \sum_{jk} \frac{V_k}{h_j h_k} \pdv{h_j}{c_k} \delta_{jl} \delta_{jm}
- \sum_{jk} \frac{V_j}{h_j h_k} \pdv{h_j}{c_k} \delta_{jl} \delta_{km}
\\
&= \frac{1}{h_l} \pdv{V_m}{c_l} + \sum_{k} \frac{V_k}{h_l h_k} \pdv{h_l}{c_k} \delta_{lm} - \frac{V_l}{h_l h_m} \pdv{h_l}{c_m}
\\
&= \frac{1}{h_l} \pdv{V_m}{c_l} - \frac{V_l}{h_l h_m} \pdv{h_l}{c_m}
\end{aligned} ( ∇ V ) l m = e ^ l ⋅ ( ∇ V ) ⋅ e ^ m = jk ∑ h j 1 ∂ c j ∂ V k δ j l δ km + jk ∑ h j h k V k ∂ c k ∂ h j δ j l δ jm − jk ∑ h j h k V j ∂ c k ∂ h j δ j l δ km = h l 1 ∂ c l ∂ V m + k ∑ h l h k V k ∂ c k ∂ h l δ l m − h l h m V l ∂ c m ∂ h l = h l 1 ∂ c l ∂ V m − h l h m V l ∂ c m ∂ h l
Advection of a vector
In physics, a common quantity is the advection ( U ⋅ ∇ ) V (\vb{U} \cdot \nabla) \vb{V} ( U ⋅ ∇ ) V
of a vector V \vb{V} V according to a velocity field U \vb{U} U ,
as found in e.g. a material derivative .
In ( c 1 , c 2 , c 3 ) (c_1, c_2, c_3) ( c 1 , c 2 , c 3 ) its c j c_j c j -component is:
( ( U ⋅ ∇ ) V ) j = ∑ k U k h k ∂ V j ∂ c k + ∑ k ≠ j V k h j h k ( U j ∂ h j ∂ c k − U k ∂ h k ∂ c j ) \begin{aligned}
\boxed{
\big( (\vb{U} \cdot \nabla) \vb{V} \big)_j
= \sum_{k} \frac{U_k}{h_k} \pdv{V_j}{c_k}
+ \sum_{k \neq j} \frac{V_k}{h_j h_k} \bigg( U_j \pdv{h_j}{c_k} - U_k \pdv{h_k}{c_j} \bigg)
}
\end{aligned} ( ( U ⋅ ∇ ) V ) j = k ∑ h k U k ∂ c k ∂ V j + k = j ∑ h j h k V k ( U j ∂ c k ∂ h j − U k ∂ c j ∂ h k )
Proof
Proof.
From our earlier calculation of ∇ f \nabla f ∇ f ,
we know how to express the del ∇ \nabla ∇ in ( c 1 , c 2 , c 3 ) (c_1, c_2, c_3) ( c 1 , c 2 , c 3 ) .
Thanks to orthogonality,
U ⋅ ∇ \vb{U} \cdot \nabla U ⋅ ∇ is therefore simply:
U ⋅ ∇ = ( U 1 e ^ 1 + U 2 e ^ 2 + U 3 e ^ 3 ) ⋅ ( e ^ 1 1 h 1 ∂ ∂ c 1 + e ^ 2 1 h 2 ∂ ∂ c 2 + e ^ 3 1 h 3 ∂ ∂ c 3 ) = ( ∑ j U j e ^ j ) ⋅ ( ∑ k e ^ k 1 h k ∂ ∂ c k ) = ∑ j k ( e ^ j ⋅ e ^ k ) U j h k ∂ ∂ c k = ∑ j U j h j ∂ ∂ c j \begin{aligned}
\vb{U} \cdot \nabla
&= \bigg( U_1 \vu{e}_1 + U_2 \vu{e}_2 + U_3 \vu{e}_3 \bigg)
\cdot \bigg( \vu{e}_1 \frac{1}{h_1} \pdv{}{c_1} + \vu{e}_2 \frac{1}{h_2} \pdv{}{c_2} + \vu{e}_3 \frac{1}{h_3} \pdv{}{c_3} \bigg)
\\
&= \bigg( \sum_{j} U_j \vu{e}_j \bigg) \cdot \bigg( \sum_{k} \vu{e}_k \frac{1}{h_k} \pdv{}{c_k} \bigg)
\\
&= \sum_{jk} (\vu{e}_j \cdot \vu{e}_k) \frac{U_j}{h_k} \pdv{}{c_k}
\\
&= \sum_{j} \frac{U_j}{h_j} \pdv{}{c_j}
\end{aligned} U ⋅ ∇ = ( U 1 e ^ 1 + U 2 e ^ 2 + U 3 e ^ 3 ) ⋅ ( e ^ 1 h 1 1 ∂ c 1 ∂ + e ^ 2 h 2 1 ∂ c 2 ∂ + e ^ 3 h 3 1 ∂ c 3 ∂ ) = ( j ∑ U j e ^ j ) ⋅ ( k ∑ e ^ k h k 1 ∂ c k ∂ ) = jk ∑ ( e ^ j ⋅ e ^ k ) h k U j ∂ c k ∂ = j ∑ h j U j ∂ c j ∂
We apply this to V \vb{V} V and use the product rule of differentiation:
( U ⋅ ∇ ) V = ( ∑ j U j h j ∂ ∂ c j ) ( ∑ k V k e ^ k ) = ∑ j k U j h j ∂ ∂ c j ( V k e ^ k ) = ∑ j k U j h j ( ∂ V k ∂ c j e ^ k + V k ∂ e ^ k ∂ c j ) \begin{aligned}
(\vb{U} \cdot \nabla) \vb{V}
&= \bigg( \sum_{j} \frac{U_j}{h_j} \pdv{}{c_j} \bigg) \bigg( \sum_{k} V_k \vu{e}_k \bigg)
\\
&= \sum_{jk} \frac{U_j}{h_j} \pdv{}{c_j} (V_k \vu{e}_k)
\\
&= \sum_{jk} \frac{U_j}{h_j} \bigg( \pdv{V_k}{c_j} \vu{e}_k + V_k \pdv{\vu{e}_k}{c_j} \bigg)
\end{aligned} ( U ⋅ ∇ ) V = ( j ∑ h j U j ∂ c j ∂ ) ( k ∑ V k e ^ k ) = jk ∑ h j U j ∂ c j ∂ ( V k e ^ k ) = jk ∑ h j U j ( ∂ c j ∂ V k e ^ k + V k ∂ c j ∂ e ^ k )
Substituting our expression for the derivatives of the local basis vectors, we find:
( U ⋅ ∇ ) V = ∑ j k U j h j ( ∂ V k ∂ c j e ^ k + V k h k ∂ h j ∂ c k e ^ j − δ j k ∑ l V k h l ∂ h k ∂ c l e ^ l ) = ∑ j k U j h j ∂ V k ∂ c j e ^ k + ∑ j k U j V k h j h k ∂ h j ∂ c k e ^ j − ∑ j l U j V j h j h l ∂ h j ∂ c l e ^ l \begin{aligned}
(\vb{U} \cdot \nabla) \vb{V}
&= \sum_{jk} \frac{U_j}{h_j} \bigg( \pdv{V_k}{c_j} \vu{e}_k
+ \frac{V_k}{h_k} \pdv{h_j}{c_k} \vu{e}_j - \delta_{jk} \sum_{l} \frac{V_k}{h_l} \pdv{h_k}{c_l} \vu{e}_l \bigg)
\\
&= \sum_{jk} \frac{U_j}{h_j} \pdv{V_k}{c_j} \vu{e}_k
+ \sum_{jk} \frac{U_j V_k}{h_j h_k} \pdv{h_j}{c_k} \vu{e}_j
- \sum_{jl} \frac{U_j V_j}{h_j h_l} \pdv{h_j}{c_l} \vu{e}_l
\end{aligned} ( U ⋅ ∇ ) V = jk ∑ h j U j ( ∂ c j ∂ V k e ^ k + h k V k ∂ c k ∂ h j e ^ j − δ jk l ∑ h l V k ∂ c l ∂ h k e ^ l ) = jk ∑ h j U j ∂ c j ∂ V k e ^ k + jk ∑ h j h k U j V k ∂ c k ∂ h j e ^ j − j l ∑ h j h l U j V j ∂ c l ∂ h j e ^ l
We rename the indices such that each term contains e ^ j \vu{e}_j e ^ j .
Note that when k = j k = j k = j , the latter two terms cancel out,
so we only need to sum for k ≠ j k \neq j k = j :
( U ⋅ ∇ ) V = ∑ j k U k h k ∂ V j ∂ c k e ^ j + ∑ j k U j V k h j h k ∂ h j ∂ c k e ^ j − ∑ j k U k V k h j h k ∂ h k ∂ c j e ^ j = ∑ j k U k h k ∂ V j ∂ c k e ^ j + ∑ j ∑ k ≠ j ( U j V k h j h k ∂ h j ∂ c k e ^ j − U k V k h j h k ∂ h k ∂ c j e ^ j ) \begin{aligned}
(\vb{U} \cdot \nabla) \vb{V}
&= \sum_{jk} \frac{U_k}{h_k} \pdv{V_j}{c_k} \vu{e}_j
+ \sum_{jk} \frac{U_j V_k}{h_j h_k} \pdv{h_j}{c_k} \vu{e}_j
- \sum_{jk} \frac{U_k V_k}{h_j h_k} \pdv{h_k}{c_j} \vu{e}_j
\\
&= \sum_{jk} \frac{U_k}{h_k} \pdv{V_j}{c_k} \vu{e}_j
+ \sum_{j} \sum_{k \neq j} \bigg( \frac{U_j V_k}{h_j h_k} \pdv{h_j}{c_k} \vu{e}_j
- \frac{U_k V_k}{h_j h_k} \pdv{h_k}{c_j} \vu{e}_j \bigg)
\end{aligned} ( U ⋅ ∇ ) V = jk ∑ h k U k ∂ c k ∂ V j e ^ j + jk ∑ h j h k U j V k ∂ c k ∂ h j e ^ j − jk ∑ h j h k U k V k ∂ c j ∂ h k e ^ j = jk ∑ h k U k ∂ c k ∂ V j e ^ j + j ∑ k = j ∑ ( h j h k U j V k ∂ c k ∂ h j e ^ j − h j h k U k V k ∂ c j ∂ h k e ^ j )
Dot-multiplying by e ^ j \vu{e}_j e ^ j isolates the c j c_j c j -component and gives the desired formula.
Laplacian of a vector
The Laplacian ∇ 2 V \nabla^2 \vb{V} ∇ 2 V of a vector V \vb{V} V
has the following components in ( c 1 , c 2 , c 3 ) (c_1, c_2, c_3) ( c 1 , c 2 , c 3 ) :
( ∇ 2 V ) j = ∑ k 1 H ∂ ∂ c k ( H h k 2 ∂ V j ∂ c k ) + ∑ k ≠ j 1 H ( ∂ ∂ c j ( H V k h j 2 h k ∂ h j ∂ c k ) − ∂ ∂ c k ( H V k h j h k 2 ∂ h k ∂ c j ) ) + ∑ k ≠ j 1 h j h k ( 1 h j ∂ V k ∂ c j ∂ h j ∂ c k − 1 h k ∂ V k ∂ c k ∂ h k ∂ c j ) − ∑ k ≠ j 1 h j h k ( V j h j h k ( ∂ h j ∂ c k ) 2 + ∑ l ≠ k V l h k h l ∂ h k ∂ c l ∂ h k ∂ c j ) \begin{aligned}
\boxed{
\begin{aligned}
(\nabla^2 \vb{V})_j
&= \sum_{k} \frac{1}{H} \pdv{}{c_k} \bigg( \frac{H}{h_k^2} \pdv{V_j}{c_k} \bigg)
\\
&\quad\: + \sum_{k \neq j} \frac{1}{H} \bigg( \pdv{}{c_j} \Big( \frac{H V_k}{h_j^2 h_k} \pdv{h_j}{c_k} \Big)
- \pdv{}{c_k} \Big( \frac{H V_k}{h_j h_k^2} \pdv{h_k}{c_j} \Big) \bigg)
\\
&\quad\: + \sum_{k \neq j} \frac{1}{h_j h_k} \bigg( \frac{1}{h_j} \pdv{V_k}{c_j} \pdv{h_j}{c_k}
- \frac{1}{h_k} \pdv{V_k}{c_k} \pdv{h_k}{c_j} \bigg)
\\
&\quad\:- \sum_{k \neq j} \frac{1}{h_j h_k} \bigg( \frac{V_j}{h_j h_k} \Big( \pdv{h_j}{c_k} \Big)^2
+ \sum_{l \neq k} \frac{V_l}{h_k h_l} \pdv{h_k}{c_l} \pdv{h_k}{c_j} \bigg)
\end{aligned}
}
\end{aligned} ( ∇ 2 V ) j = k ∑ H 1 ∂ c k ∂ ( h k 2 H ∂ c k ∂ V j ) + k = j ∑ H 1 ( ∂ c j ∂ ( h j 2 h k H V k ∂ c k ∂ h j ) − ∂ c k ∂ ( h j h k 2 H V k ∂ c j ∂ h k ) ) + k = j ∑ h j h k 1 ( h j 1 ∂ c j ∂ V k ∂ c k ∂ h j − h k 1 ∂ c k ∂ V k ∂ c j ∂ h k ) − k = j ∑ h j h k 1 ( h j h k V j ( ∂ c k ∂ h j ) 2 + l = k ∑ h k h l V l ∂ c l ∂ h k ∂ c j ∂ h k )
Proof
Proof.
We already know how to calculate the Laplacian ∇ 2 f \nabla^2 f ∇ 2 f of a scalar.
From that, we read out the ∇ 2 \nabla^2 ∇ 2 -operator
and apply it to a vector V \vb{V} V instead:
∇ 2 V = ( ∑ j 1 H ∂ ∂ c j ( H h j 2 ∂ ∂ c j ) ) ( ∑ k V k e ^ k ) = ∑ j k 1 H ∂ ∂ c j ( H h j 2 ∂ ∂ c j ( V k e ^ k ) ) = ∑ j k 1 H ∂ ∂ c j ( H h j 2 ∂ V k ∂ c j e ^ k + H V k h j 2 ∂ e ^ k ∂ c j ) = ∑ j k 1 H ∂ ∂ c j ( H h j 2 ∂ V k ∂ c j e ^ k + H V k h j 2 ( 1 h k ∂ h j ∂ c k e ^ j − δ j k ∑ l 1 h l ∂ h k ∂ c l e ^ l ) ) = ∑ j 1 H ∂ ∂ c j ( ∑ k H h j 2 ∂ V k ∂ c j e ^ k + ∑ k H V k h j 2 h k ∂ h j ∂ c k e ^ j − ∑ l H V j h j 2 h l ∂ h j ∂ c l e ^ l ) = ∑ j 1 H ∂ ∂ c j ( ∑ k H h j 2 ∂ V k ∂ c j e ^ k + ∑ k ≠ j H V k h j 2 h k ∂ h j ∂ c k e ^ j − ∑ k ≠ j H V j h j 2 h k ∂ h j ∂ c k e ^ k ) \begin{aligned}
\nabla^2 \vb{V}
&= \bigg( \sum_{j} \frac{1}{H} \pdv{}{c_j} \Big( \frac{H}{h_j^2} \pdv{}{c_j} \Big) \bigg)
\bigg( \sum_{k} V_k \vu{e}_k \bigg)
\\
&= \sum_{jk} \frac{1}{H} \pdv{}{c_j} \bigg( \frac{H}{h_j^2} \pdv{}{c_j} (V_k \vu{e}_k) \bigg)
\\
&= \sum_{jk} \frac{1}{H} \pdv{}{c_j} \bigg( \frac{H}{h_j^2} \pdv{V_k}{c_j} \vu{e}_k + \frac{H V_k}{h_j^2} \pdv{\vu{e}_k}{c_j} \bigg)
\\
&= \sum_{jk} \frac{1}{H} \pdv{}{c_j} \bigg( \frac{H}{h_j^2} \pdv{V_k}{c_j} \vu{e}_k
+ \frac{H V_k}{h_j^2} \Big( \frac{1}{h_k} \pdv{h_j}{c_k} \vu{e}_j - \delta_{jk} \sum_{l} \frac{1}{h_l} \pdv{h_k}{c_l} \vu{e}_l \Big) \bigg)
\\
&= \sum_{j} \frac{1}{H} \pdv{}{c_j} \bigg( \sum_{k} \frac{H}{h_j^2} \pdv{V_k}{c_j} \vu{e}_k
+ \sum_{k} \frac{H V_k}{h_j^2 h_k} \pdv{h_j}{c_k} \vu{e}_j
- \sum_{l} \frac{H V_j}{h_j^2 h_l} \pdv{h_j}{c_l} \vu{e}_l \bigg)
\\
&= \sum_{j} \frac{1}{H} \pdv{}{c_j} \bigg( \sum_{k} \frac{H}{h_j^2} \pdv{V_k}{c_j} \vu{e}_k
+ \sum_{k \neq j} \frac{H V_k}{h_j^2 h_k} \pdv{h_j}{c_k} \vu{e}_j
- \sum_{k \neq j} \frac{H V_j}{h_j^2 h_k} \pdv{h_j}{c_k} \vu{e}_k \bigg)
\end{aligned} ∇ 2 V = ( j ∑ H 1 ∂ c j ∂ ( h j 2 H ∂ c j ∂ ) ) ( k ∑ V k e ^ k ) = jk ∑ H 1 ∂ c j ∂ ( h j 2 H ∂ c j ∂ ( V k e ^ k ) ) = jk ∑ H 1 ∂ c j ∂ ( h j 2 H ∂ c j ∂ V k e ^ k + h j 2 H V k ∂ c j ∂ e ^ k ) = jk ∑ H 1 ∂ c j ∂ ( h j 2 H ∂ c j ∂ V k e ^ k + h j 2 H V k ( h k 1 ∂ c k ∂ h j e ^ j − δ jk l ∑ h l 1 ∂ c l ∂ h k e ^ l ) ) = j ∑ H 1 ∂ c j ∂ ( k ∑ h j 2 H ∂ c j ∂ V k e ^ k + k ∑ h j 2 h k H V k ∂ c k ∂ h j e ^ j − l ∑ h j 2 h l H V j ∂ c l ∂ h j e ^ l ) = j ∑ H 1 ∂ c j ∂ ( k ∑ h j 2 H ∂ c j ∂ V k e ^ k + k = j ∑ h j 2 h k H V k ∂ c k ∂ h j e ^ j − k = j ∑ h j 2 h k H V j ∂ c k ∂ h j e ^ k )
Where we have noticed that the latter two terms cancel out if j = k j = k j = k .
We expand according to the product rule of differentiation:
∇ 2 V = ∑ j k 1 H ∂ ∂ c j ( H h j 2 ∂ V k ∂ c j ) e ^ k + ∑ j k 1 H H h j 2 ∂ V k ∂ c j ∂ e ^ k ∂ c j + ∑ j ∑ k ≠ j 1 H ∂ ∂ c j ( H V k h j 2 h k ∂ h j ∂ c k ) e ^ j + ∑ j ∑ k ≠ j 1 H H V k h j 2 h k ∂ h j ∂ c k ∂ e ^ j ∂ c j − ∑ j ∑ k ≠ j 1 H ∂ ∂ c j ( H V j h j 2 h k ∂ h j ∂ c k ) e ^ k − ∑ j ∑ k ≠ j 1 H H V j h j 2 h k ∂ h j ∂ c k ∂ e ^ k ∂ c j \begin{aligned}
\nabla^2 \vb{V}
&= \sum_{jk} \frac{1}{H} \pdv{}{c_j} \bigg( \frac{H}{h_j^2} \pdv{V_k}{c_j} \bigg) \vu{e}_k
+ \sum_{jk} \frac{1}{H} \frac{H}{h_j^2} \pdv{V_k}{c_j} \pdv{\vu{e}_k}{c_j}
\\
&\quad\: + \sum_{j} \sum_{k \neq j} \frac{1}{H} \pdv{}{c_j} \bigg( \frac{H V_k}{h_j^2 h_k} \pdv{h_j}{c_k} \bigg) \vu{e}_j
+ \sum_{j} \sum_{k \neq j} \frac{1}{H} \frac{H V_k}{h_j^2 h_k} \pdv{h_j}{c_k} \pdv{\vu{e}_j}{c_j}
\\
&\quad\: - \sum_{j} \sum_{k \neq j} \frac{1}{H} \pdv{}{c_j} \bigg( \frac{H V_j}{h_j^2 h_k} \pdv{h_j}{c_k} \bigg) \vu{e}_k
- \sum_{j} \sum_{k \neq j} \frac{1}{H} \frac{H V_j}{h_j^2 h_k} \pdv{h_j}{c_k} \pdv{\vu{e}_k}{c_j}
\end{aligned} ∇ 2 V = jk ∑ H 1 ∂ c j ∂ ( h j 2 H ∂ c j ∂ V k ) e ^ k + jk ∑ H 1 h j 2 H ∂ c j ∂ V k ∂ c j ∂ e ^ k + j ∑ k = j ∑ H 1 ∂ c j ∂ ( h j 2 h k H V k ∂ c k ∂ h j ) e ^ j + j ∑ k = j ∑ H 1 h j 2 h k H V k ∂ c k ∂ h j ∂ c j ∂ e ^ j − j ∑ k = j ∑ H 1 ∂ c j ∂ ( h j 2 h k H V j ∂ c k ∂ h j ) e ^ k − j ∑ k = j ∑ H 1 h j 2 h k H V j ∂ c k ∂ h j ∂ c j ∂ e ^ k
Substituting our expression for the derivatives of the local basis vectors, we find:
∇ 2 V = ∑ j k 1 H ∂ ∂ c j ( H h j 2 ∂ V k ∂ c j ) e ^ k + ∑ j k 1 h j 2 ∂ V k ∂ c j ( 1 h k ∂ h j ∂ c k e ^ j − δ j k ∑ l 1 h l ∂ h k ∂ c l e ^ l ) + ∑ j ∑ k ≠ j 1 H ∂ ∂ c j ( H V k h j 2 h k ∂ h j ∂ c k ) e ^ j − ∑ j ∑ k ≠ j V k h j 2 h k ∂ h j ∂ c k ( ∑ l ≠ j 1 h l ∂ h j ∂ c l e ^ l ) − ∑ j ∑ k ≠ j 1 H ∂ ∂ c j ( H V j h j 2 h k ∂ h j ∂ c k ) e ^ k − ∑ j ∑ k ≠ j V j h j 2 h k ∂ h j ∂ c k ( 1 h k ∂ h j ∂ c k e ^ j ) = ∑ j k 1 H ∂ ∂ c j ( H h j 2 ∂ V k ∂ c j ) e ^ k + ∑ j k 1 h j 2 h k ∂ V k ∂ c j ∂ h j ∂ c k e ^ j − ∑ j l 1 h j 2 h l ∂ V j ∂ c j ∂ h j ∂ c l e ^ l + ∑ j ∑ k ≠ j 1 H ∂ ∂ c j ( H V k h j 2 h k ∂ h j ∂ c k ) e ^ j − ∑ j ∑ k ≠ j ∑ l ≠ j V k h j 2 h k h l ∂ h j ∂ c k ∂ h j ∂ c l e ^ l − ∑ j ∑ k ≠ j 1 H ∂ ∂ c j ( H V j h j 2 h k ∂ h j ∂ c k ) e ^ k − ∑ j ∑ k ≠ j V j h j 2 h k 2 ( ∂ h j ∂ c k ) 2 e ^ j = ∑ j k 1 H ∂ ∂ c j ( H h j 2 ∂ V k ∂ c j ) e ^ k + ∑ j ∑ k ≠ j 1 h j 2 h k ∂ V k ∂ c j ∂ h j ∂ c k e ^ j − ∑ j ∑ k ≠ j 1 h j 2 h k ∂ V j ∂ c j ∂ h j ∂ c k e ^ k + ∑ j ∑ k ≠ j 1 H ∂ ∂ c j ( H V k h j 2 h k ∂ h j ∂ c k ) e ^ j − ∑ j ∑ k ≠ j ∑ l ≠ j V k h j 2 h k h l ∂ h j ∂ c k ∂ h j ∂ c l e ^ l − ∑ j ∑ k ≠ j 1 H ∂ ∂ c j ( H V j h j 2 h k ∂ h j ∂ c k ) e ^ k − ∑ j ∑ k ≠ j V j h j 2 h k 2 ( ∂ h j ∂ c k ) 2 e ^ j \begin{aligned}
\nabla^2 \vb{V}
&= \sum_{jk} \frac{1}{H} \pdv{}{c_j} \bigg( \frac{H}{h_j^2} \pdv{V_k}{c_j} \bigg) \vu{e}_k
+ \sum_{jk} \frac{1}{h_j^2} \pdv{V_k}{c_j}
\bigg( \frac{1}{h_k} \pdv{h_j}{c_k} \vu{e}_j - \delta_{jk} \sum_{l} \frac{1}{h_l} \pdv{h_k}{c_l} \vu{e}_l \bigg)
\\
&\quad\: + \sum_{j} \sum_{k \neq j} \frac{1}{H} \pdv{}{c_j} \bigg( \frac{H V_k}{h_j^2 h_k} \pdv{h_j}{c_k} \bigg) \vu{e}_j
- \sum_{j} \sum_{k \neq j} \frac{V_k}{h_j^2 h_k} \pdv{h_j}{c_k} \bigg( \sum_{l \neq j} \frac{1}{h_l} \pdv{h_j}{c_l} \vu{e}_l \bigg)
\\
&\quad\: - \sum_{j} \sum_{k \neq j} \frac{1}{H} \pdv{}{c_j} \bigg( \frac{H V_j}{h_j^2 h_k} \pdv{h_j}{c_k} \bigg) \vu{e}_k
- \sum_{j} \sum_{k \neq j} \frac{V_j}{h_j^2 h_k} \pdv{h_j}{c_k} \bigg( \frac{1}{h_k} \pdv{h_j}{c_k} \vu{e}_j \bigg)
\\
&= \sum_{jk} \frac{1}{H} \pdv{}{c_j} \bigg( \frac{H}{h_j^2} \pdv{V_k}{c_j} \bigg) \vu{e}_k
+ \sum_{jk} \frac{1}{h_j^2 h_k} \pdv{V_k}{c_j} \pdv{h_j}{c_k} \vu{e}_j
- \sum_{jl} \frac{1}{h_j^2 h_l} \pdv{V_j}{c_j} \pdv{h_j}{c_l} \vu{e}_l
\\
&\quad\: + \sum_{j} \sum_{k \neq j} \frac{1}{H} \pdv{}{c_j} \bigg( \frac{H V_k}{h_j^2 h_k} \pdv{h_j}{c_k} \bigg) \vu{e}_j
- \sum_{j} \sum_{k \neq j} \sum_{l \neq j} \frac{V_k}{h_j^2 h_k h_l} \pdv{h_j}{c_k} \pdv{h_j}{c_l} \vu{e}_l
\\
&\quad\: - \sum_{j} \sum_{k \neq j} \frac{1}{H} \pdv{}{c_j} \bigg( \frac{H V_j}{h_j^2 h_k} \pdv{h_j}{c_k} \bigg) \vu{e}_k
- \sum_{j} \sum_{k \neq j} \frac{V_j}{h_j^2 h_k^2} \bigg( \pdv{h_j}{c_k} \bigg)^2 \vu{e}_j
\\
&= \sum_{jk} \frac{1}{H} \pdv{}{c_j} \bigg( \frac{H}{h_j^2} \pdv{V_k}{c_j} \bigg) \vu{e}_k
+ \sum_{j} \sum_{k \neq j} \frac{1}{h_j^2 h_k} \pdv{V_k}{c_j} \pdv{h_j}{c_k} \vu{e}_j
- \sum_{j} \sum_{k \neq j} \frac{1}{h_j^2 h_k} \pdv{V_j}{c_j} \pdv{h_j}{c_k} \vu{e}_k
\\
&\quad\: + \sum_{j} \sum_{k \neq j} \frac{1}{H} \pdv{}{c_j} \bigg( \frac{H V_k}{h_j^2 h_k} \pdv{h_j}{c_k} \bigg) \vu{e}_j
- \sum_{j} \sum_{k \neq j} \sum_{l \neq j} \frac{V_k}{h_j^2 h_k h_l} \pdv{h_j}{c_k} \pdv{h_j}{c_l} \vu{e}_l
\\
&\quad\: - \sum_{j} \sum_{k \neq j} \frac{1}{H} \pdv{}{c_j} \bigg( \frac{H V_j}{h_j^2 h_k} \pdv{h_j}{c_k} \bigg) \vu{e}_k
- \sum_{j} \sum_{k \neq j} \frac{V_j}{h_j^2 h_k^2} \bigg( \pdv{h_j}{c_k} \bigg)^2 \vu{e}_j
\end{aligned} ∇ 2 V = jk ∑ H 1 ∂ c j ∂ ( h j 2 H ∂ c j ∂ V k ) e ^ k + jk ∑ h j 2 1 ∂ c j ∂ V k ( h k 1 ∂ c k ∂ h j e ^ j − δ jk l ∑ h l 1 ∂ c l ∂ h k e ^ l ) + j ∑ k = j ∑ H 1 ∂ c j ∂ ( h j 2 h k H V k ∂ c k ∂ h j ) e ^ j − j ∑ k = j ∑ h j 2 h k V k ∂ c k ∂ h j ( l = j ∑ h l 1 ∂ c l ∂ h j e ^ l ) − j ∑ k = j ∑ H 1 ∂ c j ∂ ( h j 2 h k H V j ∂ c k ∂ h j ) e ^ k − j ∑ k = j ∑ h j 2 h k V j ∂ c k ∂ h j ( h k 1 ∂ c k ∂ h j e ^ j ) = jk ∑ H 1 ∂ c j ∂ ( h j 2 H ∂ c j ∂ V k ) e ^ k + jk ∑ h j 2 h k 1 ∂ c j ∂ V k ∂ c k ∂ h j e ^ j − j l ∑ h j 2 h l 1 ∂ c j ∂ V j ∂ c l ∂ h j e ^ l + j ∑ k = j ∑ H 1 ∂ c j ∂ ( h j 2 h k H V k ∂ c k ∂ h j ) e ^ j − j ∑ k = j ∑ l = j ∑ h j 2 h k h l V k ∂ c k ∂ h j ∂ c l ∂ h j e ^ l − j ∑ k = j ∑ H 1 ∂ c j ∂ ( h j 2 h k H V j ∂ c k ∂ h j ) e ^ k − j ∑ k = j ∑ h j 2 h k 2 V j ( ∂ c k ∂ h j ) 2 e ^ j = jk ∑ H 1 ∂ c j ∂ ( h j 2 H ∂ c j ∂ V k ) e ^ k + j ∑ k = j ∑ h j 2 h k 1 ∂ c j ∂ V k ∂ c k ∂ h j e ^ j − j ∑ k = j ∑ h j 2 h k 1 ∂ c j ∂ V j ∂ c k ∂ h j e ^ k + j ∑ k = j ∑ H 1 ∂ c j ∂ ( h j 2 h k H V k ∂ c k ∂ h j ) e ^ j − j ∑ k = j ∑ l = j ∑ h j 2 h k h l V k ∂ c k ∂ h j ∂ c l ∂ h j e ^ l − j ∑ k = j ∑ H 1 ∂ c j ∂ ( h j 2 h k H V j ∂ c k ∂ h j ) e ^ k − j ∑ k = j ∑ h j 2 h k 2 V j ( ∂ c k ∂ h j ) 2 e ^ j
Where we have once again noticed that terms #2 and #3 cancel out if j = k j = k j = k .
Next, we isolate the c m c_m c m -component by dot-multiplying with e ^ m \vu{e}_m e ^ m :
( ∇ 2 V ) m = ( ∇ 2 V ) ⋅ e ^ m = ∑ j k δ k m H ∂ ∂ c j ( H h j 2 ∂ V k ∂ c j ) + ∑ j ∑ k ≠ j δ j m h j 2 h k ∂ V k ∂ c j ∂ h j ∂ c k − ∑ j ∑ k ≠ j δ k m h j 2 h k ∂ V j ∂ c j ∂ h j ∂ c k + ∑ j ∑ k ≠ j δ j m 1 H ∂ ∂ c j ( H V k h j 2 h k ∂ h j ∂ c k ) − ∑ j ∑ k ≠ j ∑ l ≠ j δ l m V k h j 2 h k h l ∂ h j ∂ c k ∂ h j ∂ c l − ∑ j ∑ k ≠ j δ k m 1 H ∂ ∂ c j ( H V j h j 2 h k ∂ h j ∂ c k ) − ∑ j ∑ k ≠ j δ j m V j h j 2 h k 2 ( ∂ h j ∂ c k ) 2 = ∑ j 1 H ∂ ∂ c j ( H h j 2 ∂ V m ∂ c j ) + ∑ k ≠ m 1 h k h m 2 ∂ V k ∂ c m ∂ h m ∂ c k − ∑ j ≠ m 1 h j 2 h m ∂ V j ∂ c j ∂ h j ∂ c m + ∑ k ≠ m 1 H ∂ ∂ c m ( H V k h m 2 h k ∂ h m ∂ c k ) − ∑ j ≠ m ∑ k ≠ j V k h j 2 h k h m ∂ h j ∂ c k ∂ h j ∂ c m − ∑ j ≠ m 1 H ∂ ∂ c j ( H V j h j 2 h m ∂ h j ∂ c m ) − ∑ k ≠ m V m h m 2 h k 2 ( ∂ h m ∂ c k ) 2 \begin{aligned}
(\nabla^2 \vb{V})_m
&= (\nabla^2 \vb{V}) \cdot \vu{e}_m
\\
&= \sum_{jk} \frac{\delta_{km}}{H} \pdv{}{c_j} \bigg( \frac{H}{h_j^2} \pdv{V_k}{c_j} \bigg)
+ \sum_{j} \sum_{k \neq j} \frac{\delta_{jm}}{h_j^2 h_k} \pdv{V_k}{c_j} \pdv{h_j}{c_k}
- \sum_{j} \sum_{k \neq j} \frac{\delta_{km}}{h_j^2 h_k} \pdv{V_j}{c_j} \pdv{h_j}{c_k}
\\
&\quad\: + \sum_{j} \sum_{k \neq j} \delta_{jm} \frac{1}{H} \pdv{}{c_j} \bigg( \frac{H V_k}{h_j^2 h_k} \pdv{h_j}{c_k} \bigg)
- \sum_{j} \sum_{k \neq j} \sum_{l \neq j} \delta_{lm} \frac{V_k}{h_j^2 h_k h_l} \pdv{h_j}{c_k} \pdv{h_j}{c_l}
\\
&\quad\: - \sum_{j} \sum_{k \neq j} \delta_{km} \frac{1}{H} \pdv{}{c_j} \bigg( \frac{H V_j}{h_j^2 h_k} \pdv{h_j}{c_k} \bigg)
- \sum_{j} \sum_{k \neq j} \delta_{jm} \frac{V_j}{h_j^2 h_k^2} \bigg( \pdv{h_j}{c_k} \bigg)^2
\\
&= \sum_{j} \frac{1}{H} \pdv{}{c_j} \bigg( \frac{H}{h_j^2} \pdv{V_m}{c_j} \bigg)
+ \sum_{k \neq m} \frac{1}{h_k h_m^2} \pdv{V_k}{c_m} \pdv{h_m}{c_k}
- \sum_{j \neq m} \frac{1}{h_j^2 h_m} \pdv{V_j}{c_j} \pdv{h_j}{c_m}
\\
&\quad\: + \sum_{k \neq m} \frac{1}{H} \pdv{}{c_m} \bigg( \frac{H V_k}{h_m^2 h_k} \pdv{h_m}{c_k} \bigg)
- \sum_{j \neq m} \sum_{k \neq j} \frac{V_k}{h_j^2 h_k h_m} \pdv{h_j}{c_k} \pdv{h_j}{c_m}
\\
&\quad\: - \sum_{j \neq m} \frac{1}{H} \pdv{}{c_j} \bigg( \frac{H V_j}{h_j^2 h_m} \pdv{h_j}{c_m} \bigg)
- \sum_{k \neq m} \frac{V_m}{h_m^2 h_k^2} \bigg( \pdv{h_m}{c_k} \bigg)^2
\end{aligned} ( ∇ 2 V ) m = ( ∇ 2 V ) ⋅ e ^ m = jk ∑ H δ km ∂ c j ∂ ( h j 2 H ∂ c j ∂ V k ) + j ∑ k = j ∑ h j 2 h k δ jm ∂ c j ∂ V k ∂ c k ∂ h j − j ∑ k = j ∑ h j 2 h k δ km ∂ c j ∂ V j ∂ c k ∂ h j + j ∑ k = j ∑ δ jm H 1 ∂ c j ∂ ( h j 2 h k H V k ∂ c k ∂ h j ) − j ∑ k = j ∑ l = j ∑ δ l m h j 2 h k h l V k ∂ c k ∂ h j ∂ c l ∂ h j − j ∑ k = j ∑ δ km H 1 ∂ c j ∂ ( h j 2 h k H V j ∂ c k ∂ h j ) − j ∑ k = j ∑ δ jm h j 2 h k 2 V j ( ∂ c k ∂ h j ) 2 = j ∑ H 1 ∂ c j ∂ ( h j 2 H ∂ c j ∂ V m ) + k = m ∑ h k h m 2 1 ∂ c m ∂ V k ∂ c k ∂ h m − j = m ∑ h j 2 h m 1 ∂ c j ∂ V j ∂ c m ∂ h j + k = m ∑ H 1 ∂ c m ∂ ( h m 2 h k H V k ∂ c k ∂ h m ) − j = m ∑ k = j ∑ h j 2 h k h m V k ∂ c k ∂ h j ∂ c m ∂ h j − j = m ∑ H 1 ∂ c j ∂ ( h j 2 h m H V j ∂ c m ∂ h j ) − k = m ∑ h m 2 h k 2 V m ( ∂ c k ∂ h m ) 2
Which gives the desired formula after some simple index renaming and rearranging.
Divergence of a tensor
It also possible to take the divergence of a 2nd-order tensor T ‾ ‾ \overline{\overline{\mathbf{T}}} T ,
yielding a vector with these components in ( c 1 , c 2 , c 3 ) (c_1, c_2, c_3) ( c 1 , c 2 , c 3 ) :
( ∇ ⋅ T ‾ ‾ ) j = ∑ k 1 h k ∂ T k j ∂ c k + ∑ k ≠ j T j k h j h k ∂ h j ∂ c k − ∑ k ≠ j T k k h j h k ∂ h k ∂ c j + ∑ k ∑ l ≠ k T l j h k h l ∂ h k ∂ c l \begin{aligned}
\boxed{
(\nabla \cdot \overline{\overline{\mathbf{T}}})_j
= \sum_{k} \frac{1}{h_k} \pdv{T_{kj}}{c_k}
+ \sum_{k \neq j} \frac{T_{jk}}{h_j h_k} \pdv{h_j}{c_k}
- \sum_{k \neq j} \frac{T_{kk}}{h_j h_k} \pdv{h_k}{c_j}
+ \sum_{k} \sum_{l \neq k} \frac{T_{lj}}{h_k h_l} \pdv{h_k}{c_l}
}
\end{aligned} ( ∇ ⋅ T ) j = k ∑ h k 1 ∂ c k ∂ T kj + k = j ∑ h j h k T jk ∂ c k ∂ h j − k = j ∑ h j h k T kk ∂ c j ∂ h k + k ∑ l = k ∑ h k h l T l j ∂ c l ∂ h k
Proof
Proof.
From our earlier calculation of ∇ f \nabla f ∇ f ,
we know how to express the del ∇ \nabla ∇ in ( c 1 , c 2 , c 3 ) (c_1, c_2, c_3) ( c 1 , c 2 , c 3 ) .
Now we simply take the dot product and evaluate:
∇ ⋅ T ‾ ‾ = ( e ^ 1 1 h 1 ∂ ∂ c 1 + e ^ 2 1 h 2 ∂ ∂ c 2 + e ^ 3 1 h 3 ∂ ∂ c 3 ) ⋅ ( T 11 e ^ 1 e ^ 1 + T 12 e ^ 1 e ^ 2 + T 13 e ^ 1 e ^ 3 + T 21 e ^ 2 e ^ 1 + T 22 e ^ 2 e ^ 2 + T 23 e ^ 2 e ^ 3 + T 31 e ^ 3 e ^ 1 + T 32 e ^ 3 e ^ 2 + T 33 e ^ 3 e ^ 3 ) = ( ∑ j e ^ j 1 h j ∂ ∂ c j ) ⋅ ( ∑ k l T k l e ^ k e ^ l ) = ∑ j k l e ^ j ⋅ 1 h j ∂ ∂ c j ( T k l e ^ k e ^ l ) \begin{aligned}
\nabla \cdot \overline{\overline{\mathbf{T}}}
&= \bigg( \vu{e}_1 \frac{1}{h_1} \pdv{}{c_1} + \vu{e}_2 \frac{1}{h_2} \pdv{}{c_2} + \vu{e}_3 \frac{1}{h_3} \pdv{}{c_3} \bigg)
\\
&\quad\:\:\: \cdot \Big( T_{11} \vu{e}_1 \vu{e}_1 + T_{12} \vu{e}_1 \vu{e}_2 + T_{13} \vu{e}_1 \vu{e}_3
\\
&\qquad + T_{21} \vu{e}_2 \vu{e}_1 + T_{22} \vu{e}_2 \vu{e}_2 + T_{23} \vu{e}_2 \vu{e}_3
\\
&\qquad + T_{31} \vu{e}_3 \vu{e}_1 + T_{32} \vu{e}_3 \vu{e}_2 + T_{33} \vu{e}_3 \vu{e}_3 \Big)
\\
&= \bigg( \sum_{j} \vu{e}_j \frac{1}{h_j} \pdv{}{c_j} \bigg) \cdot \bigg( \sum_{kl} T_{kl} \vu{e}_k \vu{e}_l \bigg)
\\
&= \sum_{jkl} \vu{e}_j \cdot \frac{1}{h_j} \pdv{}{c_j} (T_{kl} \vu{e}_k \vu{e}_l)
\end{aligned} ∇ ⋅ T = ( e ^ 1 h 1 1 ∂ c 1 ∂ + e ^ 2 h 2 1 ∂ c 2 ∂ + e ^ 3 h 3 1 ∂ c 3 ∂ ) ⋅ ( T 11 e ^ 1 e ^ 1 + T 12 e ^ 1 e ^ 2 + T 13 e ^ 1 e ^ 3 + T 21 e ^ 2 e ^ 1 + T 22 e ^ 2 e ^ 2 + T 23 e ^ 2 e ^ 3 + T 31 e ^ 3 e ^ 1 + T 32 e ^ 3 e ^ 2 + T 33 e ^ 3 e ^ 3 ) = ( j ∑ e ^ j h j 1 ∂ c j ∂ ) ⋅ ( k l ∑ T k l e ^ k e ^ l ) = jk l ∑ e ^ j ⋅ h j 1 ∂ c j ∂ ( T k l e ^ k e ^ l )
We apply the product rule of differentiation
and use that c ⋅ ( a b ) = ( c ⋅ a ) b \vb{c} \cdot (\vb{a} \vb{b}) = (\vb{c} \cdot \vb{a}) \vb{b} c ⋅ ( ab ) = ( c ⋅ a ) b :
∇ ⋅ T ‾ ‾ = ∑ j k l ( ( e ^ j ⋅ e ^ k ) 1 h j ∂ T k l ∂ c j e ^ l + ( e ^ j ⋅ e ^ k ) T k l h j ∂ e ^ l ∂ c j + ( e ^ j ⋅ ∂ e ^ k ∂ c j ) T k l h j e ^ l ) = ∑ j k l ( δ j k 1 h j ∂ T k l ∂ c j e ^ l + δ j k T k l h j ∂ e ^ l ∂ c j + ( e ^ j ⋅ ∂ e ^ k ∂ c j ) T k l h j e ^ l ) = ∑ j l ( 1 h j ∂ T j l ∂ c j e ^ l + T j l h j ∂ e ^ l ∂ c j + ∑ k ( e ^ j ⋅ ∂ e ^ k ∂ c j ) T k l h j e ^ l ) \begin{aligned}
\nabla \cdot \overline{\overline{\mathbf{T}}}
&= \sum_{jkl} \bigg( (\vu{e}_j \cdot \vu{e}_k) \frac{1}{h_j} \pdv{T_{kl}}{c_j} \vu{e}_l
+ (\vu{e}_j \cdot \vu{e}_k) \frac{T_{kl}}{h_j} \pdv{\vu{e}_l}{c_j}
+ \Big( \vu{e}_j \cdot \pdv{\vu{e}_k}{c_j} \Big) \frac{T_{kl}}{h_j} \vu{e}_l \bigg)
\\
&= \sum_{jkl} \bigg( \delta_{jk} \frac{1}{h_j} \pdv{T_{kl}}{c_j} \vu{e}_l + \delta_{jk} \frac{T_{kl}}{h_j} \pdv{\vu{e}_l}{c_j}
+ \Big( \vu{e}_j \cdot \pdv{\vu{e}_k}{c_j} \Big) \frac{T_{kl}}{h_j} \vu{e}_l \bigg)
\\
&= \sum_{jl} \bigg( \frac{1}{h_j} \pdv{T_{jl}}{c_j} \vu{e}_l + \frac{T_{jl}}{h_j} \pdv{\vu{e}_l}{c_j}
+ \sum_{k} \Big( \vu{e}_j \cdot \pdv{\vu{e}_k}{c_j} \Big) \frac{T_{kl}}{h_j} \vu{e}_l \bigg)
\end{aligned} ∇ ⋅ T = jk l ∑ ( ( e ^ j ⋅ e ^ k ) h j 1 ∂ c j ∂ T k l e ^ l + ( e ^ j ⋅ e ^ k ) h j T k l ∂ c j ∂ e ^ l + ( e ^ j ⋅ ∂ c j ∂ e ^ k ) h j T k l e ^ l ) = jk l ∑ ( δ jk h j 1 ∂ c j ∂ T k l e ^ l + δ jk h j T k l ∂ c j ∂ e ^ l + ( e ^ j ⋅ ∂ c j ∂ e ^ k ) h j T k l e ^ l ) = j l ∑ ( h j 1 ∂ c j ∂ T j l e ^ l + h j T j l ∂ c j ∂ e ^ l + k ∑ ( e ^ j ⋅ ∂ c j ∂ e ^ k ) h j T k l e ^ l )
Inserting our expressions for the derivatives of the basis vectors
in the last term, we find:
∇ ⋅ T ‾ ‾ = ∑ j l ( 1 h j ∂ T j l ∂ c j e ^ l + T j l h j ∂ e ^ l ∂ c j + ∑ k e ^ j ⋅ ( 1 h k ∂ h j ∂ c k e ^ j − δ j k ∑ m 1 h m ∂ h k ∂ c m e ^ m ) T k l h j e ^ l ) = ∑ j l ( 1 h j ∂ T j l ∂ c j e ^ l + T j l h j ∂ e ^ l ∂ c j + ∑ k T k l h j h k ∂ h j ∂ c k e ^ l − ∑ m ( e ^ j ⋅ e ^ m ) T j l h j h m ∂ h j ∂ c m e ^ l ) = ∑ j l ( 1 h j ∂ T j l ∂ c j e ^ l + T j l h j ∂ e ^ l ∂ c j + ∑ k T k l h j h k ∂ h j ∂ c k e ^ l − T j l h j h j ∂ h j ∂ c j e ^ l ) = ∑ j l ( 1 h j ∂ T j l ∂ c j e ^ l + T j l h j ∂ e ^ l ∂ c j + ∑ k ≠ j T k l h j h k ∂ h j ∂ c k e ^ l ) \begin{aligned}
\nabla \cdot \overline{\overline{\mathbf{T}}}
&= \sum_{jl} \bigg( \frac{1}{h_j} \pdv{T_{jl}}{c_j} \vu{e}_l + \frac{T_{jl}}{h_j} \pdv{\vu{e}_l}{c_j}
+ \sum_{k} \vu{e}_j \cdot
\Big( \frac{1}{h_k} \pdv{h_j}{c_k} \vu{e}_j - \delta_{jk} \sum_{m} \frac{1}{h_m} \pdv{h_k}{c_m} \vu{e}_m \Big) \frac{T_{kl}}{h_j} \vu{e}_l \bigg)
\\
&= \sum_{jl} \bigg( \frac{1}{h_j} \pdv{T_{jl}}{c_j} \vu{e}_l + \frac{T_{jl}}{h_j} \pdv{\vu{e}_l}{c_j}
+ \sum_{k} \frac{T_{kl}}{h_j h_k} \pdv{h_j}{c_k} \vu{e}_l
- \sum_{m} (\vu{e}_j \cdot \vu{e}_m) \frac{T_{jl}}{h_j h_m} \pdv{h_j}{c_m} \vu{e}_l \bigg)
\\
&= \sum_{jl} \bigg( \frac{1}{h_j} \pdv{T_{jl}}{c_j} \vu{e}_l + \frac{T_{jl}}{h_j} \pdv{\vu{e}_l}{c_j}
+ \sum_{k} \frac{T_{kl}}{h_j h_k} \pdv{h_j}{c_k} \vu{e}_l - \frac{T_{jl}}{h_j h_j} \pdv{h_j}{c_j} \vu{e}_l \bigg)
\\
&= \sum_{jl} \bigg( \frac{1}{h_j} \pdv{T_{jl}}{c_j} \vu{e}_l + \frac{T_{jl}}{h_j} \pdv{\vu{e}_l}{c_j}
+ \sum_{k \neq j} \frac{T_{kl}}{h_j h_k} \pdv{h_j}{c_k} \vu{e}_l \bigg)
\end{aligned} ∇ ⋅ T = j l ∑ ( h j 1 ∂ c j ∂ T j l e ^ l + h j T j l ∂ c j ∂ e ^ l + k ∑ e ^ j ⋅ ( h k 1 ∂ c k ∂ h j e ^ j − δ jk m ∑ h m 1 ∂ c m ∂ h k e ^ m ) h j T k l e ^ l ) = j l ∑ ( h j 1 ∂ c j ∂ T j l e ^ l + h j T j l ∂ c j ∂ e ^ l + k ∑ h j h k T k l ∂ c k ∂ h j e ^ l − m ∑ ( e ^ j ⋅ e ^ m ) h j h m T j l ∂ c m ∂ h j e ^ l ) = j l ∑ ( h j 1 ∂ c j ∂ T j l e ^ l + h j T j l ∂ c j ∂ e ^ l + k ∑ h j h k T k l ∂ c k ∂ h j e ^ l − h j h j T j l ∂ c j ∂ h j e ^ l ) = j l ∑ ( h j 1 ∂ c j ∂ T j l e ^ l + h j T j l ∂ c j ∂ e ^ l + k = j ∑ h j h k T k l ∂ c k ∂ h j e ^ l )
Where we noticed that the latter two terms cancel out if k = j k = j k = j .
Next, rewriting ∂ e ^ l / ∂ c j \ipdv{\vu{e}_l}{c_j} ∂ e ^ l / ∂ c j :
∇ ⋅ T ‾ ‾ = ∑ j l ( 1 h j ∂ T j l ∂ c j e ^ l + T j l h j ( 1 h l ∂ h j ∂ c l e ^ j − δ j l ∑ m 1 h m ∂ h l ∂ c m e ^ m ) + ∑ k ≠ j T k l h j h k ∂ h j ∂ c k e ^ l ) = ∑ j l ( 1 h j ∂ T j l ∂ c j e ^ l + T j l h j h l ∂ h j ∂ c l e ^ j − δ j l ∑ m T j l h j h m ∂ h l ∂ c m e ^ m + ∑ k ≠ j T k l h j h k ∂ h j ∂ c k e ^ l ) = ∑ j l 1 h j ∂ T j l ∂ c j e ^ l + ∑ j l T j l h j h l ∂ h j ∂ c l e ^ j − ∑ j m T j j h j h m ∂ h j ∂ c m e ^ m + ∑ j l ∑ k ≠ j T k l h j h k ∂ h j ∂ c k e ^ l \begin{aligned}
\nabla \cdot \overline{\overline{\mathbf{T}}}
&= \sum_{jl} \bigg( \frac{1}{h_j} \pdv{T_{jl}}{c_j} \vu{e}_l
+ \frac{T_{jl}}{h_j} \Big( \frac{1}{h_l} \pdv{h_j}{c_l} \vu{e}_j - \delta_{jl} \sum_{m} \frac{1}{h_m} \pdv{h_l}{c_m} \vu{e}_m \Big)
+ \sum_{k \neq j} \frac{T_{kl}}{h_j h_k} \pdv{h_j}{c_k} \vu{e}_l \bigg)
\\
&= \sum_{jl} \bigg( \frac{1}{h_j} \pdv{T_{jl}}{c_j} \vu{e}_l
+ \frac{T_{jl}}{h_j h_l} \pdv{h_j}{c_l} \vu{e}_j - \delta_{jl} \sum_{m} \frac{T_{jl}}{h_j h_m} \pdv{h_l}{c_m} \vu{e}_m
+ \sum_{k \neq j} \frac{T_{kl}}{h_j h_k} \pdv{h_j}{c_k} \vu{e}_l \bigg)
\\
&= \sum_{jl} \frac{1}{h_j} \pdv{T_{jl}}{c_j} \vu{e}_l
+ \sum_{jl} \frac{T_{jl}}{h_j h_l} \pdv{h_j}{c_l} \vu{e}_j
- \sum_{jm} \frac{T_{jj}}{h_j h_m} \pdv{h_j}{c_m} \vu{e}_m
+ \sum_{jl} \sum_{k \neq j} \frac{T_{kl}}{h_j h_k} \pdv{h_j}{c_k} \vu{e}_l
\end{aligned} ∇ ⋅ T = j l ∑ ( h j 1 ∂ c j ∂ T j l e ^ l + h j T j l ( h l 1 ∂ c l ∂ h j e ^ j − δ j l m ∑ h m 1 ∂ c m ∂ h l e ^ m ) + k = j ∑ h j h k T k l ∂ c k ∂ h j e ^ l ) = j l ∑ ( h j 1 ∂ c j ∂ T j l e ^ l + h j h l T j l ∂ c l ∂ h j e ^ j − δ j l m ∑ h j h m T j l ∂ c m ∂ h l e ^ m + k = j ∑ h j h k T k l ∂ c k ∂ h j e ^ l ) = j l ∑ h j 1 ∂ c j ∂ T j l e ^ l + j l ∑ h j h l T j l ∂ c l ∂ h j e ^ j − jm ∑ h j h m T jj ∂ c m ∂ h j e ^ m + j l ∑ k = j ∑ h j h k T k l ∂ c k ∂ h j e ^ l
Renaming the indices such that each term contains e ^ l \vu{e}_l e ^ l ,
we arrive at the full result:
∇ ⋅ T ‾ ‾ = ∑ j l ( 1 h j ∂ T j l ∂ c j + T l j h j h l ∂ h l ∂ c j − T j j h j h l ∂ h j ∂ c l + ∑ k ≠ j T k l h j h k ∂ h j ∂ c k ) e ^ l \begin{aligned}
\nabla \cdot \overline{\overline{\mathbf{T}}}
&= \sum_{jl} \bigg( \frac{1}{h_j} \pdv{T_{jl}}{c_j}
+ \frac{T_{lj}}{h_j h_l} \pdv{h_l}{c_j}
- \frac{T_{jj}}{h_j h_l} \pdv{h_j}{c_l}
+ \sum_{k \neq j} \frac{T_{kl}}{h_j h_k} \pdv{h_j}{c_k} \bigg) \vu{e}_l
\end{aligned} ∇ ⋅ T = j l ∑ ( h j 1 ∂ c j ∂ T j l + h j h l T l j ∂ c j ∂ h l − h j h l T jj ∂ c l ∂ h j + k = j ∑ h j h k T k l ∂ c k ∂ h j ) e ^ l
To isolate the c m c_m c m -component, we dot-multiply by e ^ m \vu{e}_m e ^ m
and resolve the Kronecker delta δ l m \delta_{lm} δ l m :
( ∇ ⋅ T ‾ ‾ ) m = ( ∇ ⋅ T ‾ ‾ ) ⋅ e ^ m = ∑ j l δ l m ( 1 h j ∂ T j l ∂ c j + T l j h j h l ∂ h l ∂ c j − T j j h j h l ∂ h j ∂ c l + ∑ k ≠ j T k l h j h k ∂ h j ∂ c k ) = ∑ j 1 h j ∂ T j m ∂ c j + ∑ j T m j h j h m ∂ h m ∂ c j − ∑ j T j j h j h m ∂ h j ∂ c m + ∑ j ∑ k ≠ j T k m h j h k ∂ h j ∂ c k \begin{aligned}
(\nabla \cdot \overline{\overline{\mathbf{T}}})_m
&= (\nabla \cdot \overline{\overline{\mathbf{T}}}) \cdot \vu{e}_m
\\
&= \sum_{jl} \delta_{lm} \bigg( \frac{1}{h_j} \pdv{T_{jl}}{c_j}
+ \frac{T_{lj}}{h_j h_l} \pdv{h_l}{c_j}
- \frac{T_{jj}}{h_j h_l} \pdv{h_j}{c_l}
+ \sum_{k \neq j} \frac{T_{kl}}{h_j h_k} \pdv{h_j}{c_k} \bigg)
\\
&= \sum_{j} \frac{1}{h_j} \pdv{T_{jm}}{c_j}
+ \sum_{j} \frac{T_{mj}}{h_j h_m} \pdv{h_m}{c_j}
- \sum_{j} \frac{T_{jj}}{h_j h_m} \pdv{h_j}{c_m}
+ \sum_{j} \sum_{k \neq j} \frac{T_{km}}{h_j h_k} \pdv{h_j}{c_k}
\end{aligned} ( ∇ ⋅ T ) m = ( ∇ ⋅ T ) ⋅ e ^ m = j l ∑ δ l m ( h j 1 ∂ c j ∂ T j l + h j h l T l j ∂ c j ∂ h l − h j h l T jj ∂ c l ∂ h j + k = j ∑ h j h k T k l ∂ c k ∂ h j ) = j ∑ h j 1 ∂ c j ∂ T jm + j ∑ h j h m T mj ∂ c j ∂ h m − j ∑ h j h m T jj ∂ c m ∂ h j + j ∑ k = j ∑ h j h k T km ∂ c k ∂ h j
The second and third terms cancel out for j = m j = m j = m ,
so we can sum over j ≠ m j \neq m j = m instead.
References
M.L. Boas,
Mathematical methods in the physical sciences , 2nd edition,
Wiley.
B. Lautrup,
Physics of continuous matter: exotic and everyday phenomena in the macroscopic world , 2nd edition,
CRC Press.
B. Lautrup,
Orthogonal curvilinear coordinates ,
2004, unpublished.