Categories:
Mathematics ,
Physics .
Orthogonal curvilinear coordinates
In a 3D coordinate system, the isosurface of a coordinate
(i.e. the surface where that coordinate is constant while the others vary)
is known as a coordinate surface , and the intersection line
of two coordinates surfaces is called a coordinate line .
A curvilinear coordinate system is one
where at least one of the coordinate surfaces is curved:
e.g. in cylindrical coordinates, the coordinate line of r r r and z z z is a circle.
Here we limit ourselves to orthogonal systems,
where the coordinate surfaces are always perpendicular.
Examples of such orthogonal curvilinear systems are
spherical coordinates ,
polar cylindrical coordinates ,
parabolic cylindrical coordinates ,
and (trivially) Cartesian coordinates .
Scale factors and basis vectors
Given such a system with coordinates ( c 1 , c 2 , c 3 ) (c_1, c_2, c_3) ( c 1 , c 2 , c 3 ) .
Their definition lets us convert all positions
to classic Cartesian coordinates ( x , y , z ) (x, y, z) ( x , y , z )
using functions x x x , y y y and z z z :
x = x ( c 1 , c 2 , c 3 ) y = y ( c 1 , c 2 , c 3 ) z = z ( c 1 , c 2 , c 3 ) \begin{aligned}
x
&= x(c_1, c_2, c_3)
\\
y
&= y(c_1, c_2, c_3)
\\
z
&= z(c_1, c_2, c_3)
\end{aligned} x y z = x ( c 1 , c 2 , c 3 ) = y ( c 1 , c 2 , c 3 ) = z ( c 1 , c 2 , c 3 )
A useful attribute of a coordinate system is its line element d ℓ \dd{\vb{\ell}} d ℓ ,
which represents the differential element of a line in any direction.
Let e ^ x \vu{e}_x e ^ x , e ^ y \vu{e}_y e ^ y and e ^ z \vu{e}_z e ^ z be the Cartesian basis unit vectors:
d ℓ ≡ e ^ x d x + e ^ y d y + e ^ z d z \begin{aligned}
\dd{\vb{\ell}}
\equiv \vu{e}_x \dd{x} + \: \vu{e}_y \dd{y} + \: \vu{e}_z \dd{z}
\end{aligned} d ℓ ≡ e ^ x d x + e ^ y d y + e ^ z d z
The Cartesian differential elements can be rewritten
in ( c 1 , c 2 , c 3 ) (c_1, c_2, c_3) ( c 1 , c 2 , c 3 ) with the chain rule:
d ℓ = e ^ x ( ∂ x ∂ c 1 d c 1 + ∂ x ∂ c 2 d c 2 + ∂ x ∂ c 3 d c 3 ) + e ^ y ( ∂ y ∂ c 1 d c 1 + ∂ y ∂ c 2 d c 2 + ∂ y ∂ c 3 d c 3 ) + e ^ z ( ∂ z ∂ c 1 d c 1 + ∂ z ∂ c 2 d c 2 + ∂ z ∂ c 3 d c 3 ) = ( ∂ x ∂ c 1 e ^ x + ∂ y ∂ c 1 e ^ y + ∂ z ∂ c 1 e ^ z ) d c 1 + ( ∂ x ∂ c 2 e ^ x + ∂ y ∂ c 2 e ^ y + ∂ z ∂ c 2 e ^ z ) d c 2 + ( ∂ x ∂ c 3 e ^ x + ∂ y ∂ c 3 e ^ y + ∂ z ∂ c 3 e ^ z ) d c 3 \begin{aligned}
\dd{\vb{\ell}}
= \quad &\vu{e}_x \bigg( \pdv{x}{c_1} \dd{c_1} + \: \pdv{x}{c_2} \dd{c_2} + \: \pdv{x}{c_3} \dd{c_3} \!\bigg)
\\
+ \: &\vu{e}_y \bigg( \pdv{y}{c_1} \dd{c_1} + \: \pdv{y}{c_2} \dd{c_2} + \: \pdv{y}{c_3} \dd{c_3} \!\bigg)
\\
+ \: &\vu{e}_z \bigg( \pdv{z}{c_1} \dd{c_1} + \: \pdv{z}{c_2} \dd{c_2} + \: \pdv{z}{c_3} \dd{c_3} \!\bigg)
\\
= \quad &\bigg( \pdv{x}{c_1} \vu{e}_x + \pdv{y}{c_1} \vu{e}_y + \pdv{z}{c_1} \vu{e}_z \bigg) \dd{c_1}
\\
+ &\bigg( \pdv{x}{c_2} \vu{e}_x + \pdv{y}{c_2} \vu{e}_y + \pdv{z}{c_2} \vu{e}_z \bigg) \dd{c_2}
\\
+ &\bigg( \pdv{x}{c_3} \vu{e}_x + \pdv{y}{c_3} \vu{e}_y + \pdv{z}{c_3} \vu{e}_z \bigg) \dd{c_3}
\end{aligned} d ℓ = + + = + + e ^ x ( ∂ c 1 ∂ x d c 1 + ∂ c 2 ∂ x d c 2 + ∂ c 3 ∂ x d c 3 ) e ^ y ( ∂ c 1 ∂ y d c 1 + ∂ c 2 ∂ y d c 2 + ∂ c 3 ∂ y d c 3 ) e ^ z ( ∂ c 1 ∂ z d c 1 + ∂ c 2 ∂ z d c 2 + ∂ c 3 ∂ z d c 3 ) ( ∂ c 1 ∂ x e ^ x + ∂ c 1 ∂ y e ^ y + ∂ c 1 ∂ z e ^ z ) d c 1 ( ∂ c 2 ∂ x e ^ x + ∂ c 2 ∂ y e ^ y + ∂ c 2 ∂ z e ^ z ) d c 2 ( ∂ c 3 ∂ x e ^ x + ∂ c 3 ∂ y e ^ y + ∂ c 3 ∂ z e ^ z ) d c 3
From this we define the scale factors h 1 h_1 h 1 , h 2 h_2 h 2 and h 3 h_3 h 3
and local basis vectors e ^ 1 \vu{e}_1 e ^ 1 , e ^ 2 \vu{e}_2 e ^ 2 and e ^ 3 \vu{e}_3 e ^ 3 :
h 1 e ^ 1 ≡ ∂ x ∂ c 1 e ^ x + ∂ y ∂ c 1 e ^ y + ∂ z ∂ c 1 e ^ z h 2 e ^ 2 ≡ ∂ x ∂ c 2 e ^ x + ∂ y ∂ c 2 e ^ y + ∂ z ∂ c 2 e ^ z h 3 e ^ 3 ≡ ∂ x ∂ c 3 e ^ x + ∂ y ∂ c 3 e ^ y + ∂ z ∂ c 3 e ^ z \begin{aligned}
\boxed{
\begin{aligned}
h_1 \vu{e}_1
&\equiv \pdv{x}{c_1} \vu{e}_x + \pdv{y}{c_1} \vu{e}_y + \pdv{z}{c_1} \vu{e}_z
\\
h_2 \vu{e}_2
&\equiv \pdv{x}{c_2} \vu{e}_x + \pdv{y}{c_2} \vu{e}_y + \pdv{z}{c_2} \vu{e}_z
\\
h_3 \vu{e}_3
&\equiv \pdv{x}{c_3} \vu{e}_x + \pdv{y}{c_3} \vu{e}_y + \pdv{z}{c_3} \vu{e}_z
\end{aligned}
}
\end{aligned} h 1 e ^ 1 h 2 e ^ 2 h 3 e ^ 3 ≡ ∂ c 1 ∂ x e ^ x + ∂ c 1 ∂ y e ^ y + ∂ c 1 ∂ z e ^ z ≡ ∂ c 2 ∂ x e ^ x + ∂ c 2 ∂ y e ^ y + ∂ c 2 ∂ z e ^ z ≡ ∂ c 3 ∂ x e ^ x + ∂ c 3 ∂ y e ^ y + ∂ c 3 ∂ z e ^ z
Where e ^ 1 \vu{e}_1 e ^ 1 , e ^ 2 \vu{e}_2 e ^ 2 and e ^ 3 \vu{e}_3 e ^ 3 are normalized,
and orthogonal for any orthogonal curvilinear system.
They are called local basis vectors
because they generally depend on ( c 1 , c 2 , c 3 ) (c_1, c_2, c_3) ( c 1 , c 2 , c 3 ) ,
i.e. their directions vary from position to position.
Their definitions can also be inverted:
e ^ x ≡ ∂ c 1 ∂ x h 1 e ^ 1 + ∂ c 2 ∂ x h 2 e ^ 2 + ∂ c 3 ∂ x h 3 e ^ 3 e ^ y ≡ ∂ c 1 ∂ y h 1 e ^ 1 + ∂ c 2 ∂ y h 2 e ^ 2 + ∂ c 3 ∂ y h 3 e ^ 3 e ^ z ≡ ∂ c 1 ∂ z h 1 e ^ 1 + ∂ c 2 ∂ z h 2 e ^ 2 + ∂ c 3 ∂ z h 3 e ^ 3 \begin{aligned}
\boxed{
\begin{aligned}
\vu{e}_x
&\equiv \pdv{c_1}{x} h_1 \vu{e}_1 + \pdv{c_2}{x} h_2 \vu{e}_2 + \pdv{c_3}{x} h_3 \vu{e}_3
\\
\vu{e}_y
&\equiv \pdv{c_1}{y} h_1 \vu{e}_1 + \pdv{c_2}{y} h_2 \vu{e}_2 + \pdv{c_3}{y} h_3 \vu{e}_3
\\
\vu{e}_z
&\equiv \pdv{c_1}{z} h_1 \vu{e}_1 + \pdv{c_2}{z} h_2 \vu{e}_2 + \pdv{c_3}{z} h_3 \vu{e}_3
\end{aligned}
}
\end{aligned} e ^ x e ^ y e ^ z ≡ ∂ x ∂ c 1 h 1 e ^ 1 + ∂ x ∂ c 2 h 2 e ^ 2 + ∂ x ∂ c 3 h 3 e ^ 3 ≡ ∂ y ∂ c 1 h 1 e ^ 1 + ∂ y ∂ c 2 h 2 e ^ 2 + ∂ y ∂ c 3 h 3 e ^ 3 ≡ ∂ z ∂ c 1 h 1 e ^ 1 + ∂ z ∂ c 2 h 2 e ^ 2 + ∂ z ∂ c 3 h 3 e ^ 3
In the following subsections, we use the scale factors h 1 h_1 h 1 , h 2 h_2 h 2 and h 3 h_3 h 3
to derive general formulae for converting vector calculus
from Cartesian coordinates to ( c 1 , c 2 , c 3 ) (c_1, c_2, c_3) ( c 1 , c 2 , c 3 ) .
Differential elements
The point of the scale factors h 1 h_1 h 1 , h 2 h_2 h 2 and h 3 h_3 h 3 ,
as can be seen from their derivation,
is to correct for “distortions” of the coordinates compared to the Cartesian system,
such that the line element d ℓ \dd{\vb{\ell}} d ℓ retains its length.
As was already established above:
d ℓ = e ^ 1 h 1 d c 1 + e ^ 2 h 2 d c 2 + e ^ 3 h 3 d c 3 \begin{aligned}
\boxed{
\dd{\vb{\ell}}
= \vu{e}_1 h_1 \dd{c_1} + \: \vu{e}_2 h_2 \dd{c_2} + \: \vu{e}_3 h_3 \dd{c_3}
}
\end{aligned} d ℓ = e ^ 1 h 1 d c 1 + e ^ 2 h 2 d c 2 + e ^ 3 h 3 d c 3
These terms are the differentials along each of the local basis vectors.
Let us now introduce the following notation, e.g. for c 1 c_1 c 1 :
d 1 x ≡ ∂ x ∂ c 1 d c 1 = ( ∂ x ∂ c 1 e ^ x + ∂ y ∂ c 1 e ^ y + ∂ z ∂ c 1 e ^ z ) d c 1 = e ^ 1 h 1 d c 1 \begin{aligned}
\dd{}_1\!\vb{x}
\equiv \pdv{\vb{x}}{c_1} \dd{c_1}
= \Big( \pdv{x}{c_1} \vu{e}_x + \pdv{y}{c_1} \vu{e}_y + \pdv{z}{c_1} \vu{e}_z \Big) \dd{c_1}
= \vu{e}_1 h_1 \dd{c_1}
\end{aligned} d 1 x ≡ ∂ c 1 ∂ x d c 1 = ( ∂ c 1 ∂ x e ^ x + ∂ c 1 ∂ y e ^ y + ∂ c 1 ∂ z e ^ z ) d c 1 = e ^ 1 h 1 d c 1
And likewise we define d 2 x \dd{}_2\!\vb{x} d 2 x and d 3 x \dd{}_3\!\vb{x} d 3 x .
All differential elements (as found in e.g. integrals)
can be expressed in terms of d 1 x \dd{}_1\!\vb{x} d 1 x , d 2 x \dd{}_2\!\vb{x} d 2 x and d 3 x \dd{}_3\!\vb{x} d 3 x .
The differential normal vector element d S ^ \dd{\vu{S}} d S ^ in a surface integral is hence given by:
d S = d 1 x × d 2 x + d 2 x × d 3 x + d 3 x × d 1 x = ( e ^ 1 × e ^ 2 ) h 1 h 2 d c 1 d c 2 + ( e ^ 2 × e ^ 3 ) h 2 h 3 d c 2 d c 3 + ( e ^ 3 × e ^ 1 ) h 1 h 3 d c 1 d c 3 \begin{aligned}
\dd{\vb{S}}
&= \dd{}_1\!\vb{x} \cross \dd{}_2\!\vb{x} + \dd{}_2\!\vb{x} \cross \dd{}_3\!\vb{x} + \dd{}_3\!\vb{x} \cross \dd{}_1\!\vb{x}
\\
&= (\vu{e}_1 \cross \vu{e}_2) \: h_1 h_2 \dd{c_1} \dd{c_2}
+ \: (\vu{e}_2 \cross \vu{e}_3) \: h_2 h_3 \dd{c_2} \dd{c_3}
+ \: (\vu{e}_3 \cross \vu{e}_1) \: h_1 h_3 \dd{c_1} \dd{c_3}
\end{aligned} d S = d 1 x × d 2 x + d 2 x × d 3 x + d 3 x × d 1 x = ( e ^ 1 × e ^ 2 ) h 1 h 2 d c 1 d c 2 + ( e ^ 2 × e ^ 3 ) h 2 h 3 d c 2 d c 3 + ( e ^ 3 × e ^ 1 ) h 1 h 3 d c 1 d c 3
In an orthonormal basis we have
e ^ 1 × e ^ 2 = e ^ 3 \vu{e}_1 \cross \vu{e}_2 = \vu{e}_3 e ^ 1 × e ^ 2 = e ^ 3 ,
e ^ 2 × e ^ 3 = e ^ 1 \vu{e}_2 \cross \vu{e}_3 = \vu{e}_1 e ^ 2 × e ^ 3 = e ^ 1 and
e ^ 3 × e ^ 1 = e ^ 2 \vu{e}_3 \cross \vu{e}_1 = \vu{e}_2 e ^ 3 × e ^ 1 = e ^ 2 , so:
d S = e ^ 1 h 2 h 3 d c 2 d c 3 + e ^ 2 h 1 h 3 d c 1 d c 3 + e ^ 3 h 1 h 2 d c 1 d c 2 \begin{aligned}
\boxed{
\dd{\vb{S}}
= \vu{e}_1 \: h_2 h_3 \dd{c_2} \dd{c_3} + \: \vu{e}_2 \: h_1 h_3 \dd{c_1} \dd{c_3} + \: \vu{e}_3 \: h_1 h_2 \dd{c_1} \dd{c_2}
}
\end{aligned} d S = e ^ 1 h 2 h 3 d c 2 d c 3 + e ^ 2 h 1 h 3 d c 1 d c 3 + e ^ 3 h 1 h 2 d c 1 d c 2
Next, the differential volume d V \dd{V} d V
must also be corrected by the scale factors:
d V = d 1 x × d 2 x ⋅ d 3 x = ( e ^ 1 × e ^ 2 ⋅ e ^ 3 ) h 1 h 2 h 3 d c 1 d c 2 d c 3 \begin{aligned}
\dd{V}
= \dd{}_1\!\vb{x} \cross \dd{}_2\!\vb{x} \cdot \dd{}_3\!\vb{x}
= (\vu{e}_1 \cross \vu{e}_2 \cdot \vu{e}_3) \: h_1 h_2 h_3 \dd{c_1} \dd{c_2} \dd{c_3}
\end{aligned} d V = d 1 x × d 2 x ⋅ d 3 x = ( e ^ 1 × e ^ 2 ⋅ e ^ 3 ) h 1 h 2 h 3 d c 1 d c 2 d c 3
Once again e ^ 1 × e ^ 2 = e ^ 3 \vu{e}_1 \cross \vu{e}_2 = \vu{e}_3 e ^ 1 × e ^ 2 = e ^ 3 ,
so the vectors disappear from the expression, leaving:
d V = h 1 h 2 h 3 d c 1 d c 2 d c 3 \begin{aligned}
\boxed{
\dd{V}
= h_1 h_2 h_3 \dd{c_1} \dd{c_2} \dd{c_3}
}
\end{aligned} d V = h 1 h 2 h 3 d c 1 d c 2 d c 3
Basis vector derivatives
Orthonormality tells us that e ^ j ⋅ e ^ j = 1 \vu{e}_j \cdot \vu{e}_j = 1 e ^ j ⋅ e ^ j = 1 for j = 1 , 2 , 3 j = 1,2,3 j = 1 , 2 , 3 .
Differentiating with respect to c k c_k c k :
∂ ∂ c k ( e ^ j ⋅ e ^ j ) = 2 ∂ e ^ j ∂ c k ⋅ e ^ j = ∂ ∂ c k 1 = 0 \begin{aligned}
\pdv{}{c_k} (\vu{e}_j \cdot \vu{e}_j)
= 2 \pdv{\vu{e}_j}{c_k} \cdot \vu{e}_j
= \pdv{}{c_k} 1
= 0
\end{aligned} ∂ c k ∂ ( e ^ j ⋅ e ^ j ) = 2 ∂ c k ∂ e ^ j ⋅ e ^ j = ∂ c k ∂ 1 = 0
This means that the c k c_k c k -derivative of e ^ j \vu{e}_j e ^ j
will always be orthogonal to e ^ j \vu{e}_j e ^ j , for all j j j and k k k .
Indeed, the general expression for the derivative of a local basis vector is:
∂ e ^ j ∂ c k = 1 h j ∂ h k ∂ c j e ^ k − δ j k ∑ l 1 h l ∂ h j ∂ c l e ^ l \begin{aligned}
\boxed{
\pdv{\vu{e}_j}{c_k}
= \frac{1}{h_j} \pdv{h_k}{c_j} \vu{e}_k - \delta_{jk} \sum_{l} \frac{1}{h_l} \pdv{h_j}{c_l} \vu{e}_l
}
\end{aligned} ∂ c k ∂ e ^ j = h j 1 ∂ c j ∂ h k e ^ k − δ jk l ∑ h l 1 ∂ c l ∂ h j e ^ l
Where δ j k \delta_{jk} δ jk is the Kronecker delta.
For example, if j = 1 j = 1 j = 1 , writing this out gives:
∂ e ^ 1 ∂ c 1 = − 1 h 2 ∂ h 1 ∂ c 2 e ^ 2 − 1 h 3 ∂ h 1 ∂ c 3 e ^ 3 ∂ e ^ 1 ∂ c 2 = 1 h 1 ∂ h 2 ∂ c 1 e ^ 2 ∂ e ^ 1 ∂ c 3 = 1 h 1 ∂ h 3 ∂ c 1 e ^ 3 \begin{aligned}
\pdv{\vu{e}_1}{c_1}
&= - \frac{1}{h_2} \pdv{h_1}{c_2} \vu{e}_2 - \frac{1}{h_3} \pdv{h_1}{c_3} \vu{e}_3
\\
\pdv{\vu{e}_1}{c_2}
&= \frac{1}{h_1} \pdv{h_2}{c_1} \vu{e}_2
\\
\pdv{\vu{e}_1}{c_3}
&= \frac{1}{h_1} \pdv{h_3}{c_1} \vu{e}_3
\end{aligned} ∂ c 1 ∂ e ^ 1 ∂ c 2 ∂ e ^ 1 ∂ c 3 ∂ e ^ 1 = − h 2 1 ∂ c 2 ∂ h 1 e ^ 2 − h 3 1 ∂ c 3 ∂ h 1 e ^ 3 = h 1 1 ∂ c 1 ∂ h 2 e ^ 2 = h 1 1 ∂ c 1 ∂ h 3 e ^ 3
Proof
Proof.
In this proof we set j = 1 j = 1 j = 1 and k = 2 k = 2 k = 2 for clarity,
but the approach is valid for any j ≠ k j \neq k j = k .
We know the definitions of h 1 e ^ 1 h_1 \vu{e}_1 h 1 e ^ 1 and h 2 e ^ 2 h_2 \vu{e}_2 h 2 e ^ 2 ,
and that differentiations can be reordered:
∂ ∂ c 2 ( h 1 e ^ 1 ) = ∂ ∂ c 2 ∂ ∂ c 1 ( x e ^ x + y e ^ y + z e ^ z ) = ∂ ∂ c 1 ( h 2 e ^ 2 ) \begin{aligned}
\pdv{}{c_2} (h_1 \vu{e}_1)
&= \pdv{}{c_2} \pdv{}{c_1} \big( x \vu{e}_x + y \vu{e}_y + z \vu{e}_z \big)
= \pdv{}{c_1} (h_2 \vu{e}_2)
\end{aligned} ∂ c 2 ∂ ( h 1 e ^ 1 ) = ∂ c 2 ∂ ∂ c 1 ∂ ( x e ^ x + y e ^ y + z e ^ z ) = ∂ c 1 ∂ ( h 2 e ^ 2 )
Expanding this according to the product rule of differentiation:
∂ h 1 ∂ c 2 e ^ 1 + h 1 ∂ e ^ 1 ∂ c 2 = ∂ h 2 ∂ c 1 e ^ 2 + h 2 ∂ e ^ 2 ∂ c 1 \begin{aligned}
\pdv{h_1}{c_2} \vu{e}_1 + h_1 \pdv{\vu{e}_1}{c_2}
= \pdv{h_2}{c_1} \vu{e}_2 + h_2 \pdv{\vu{e}_2}{c_1}
\end{aligned} ∂ c 2 ∂ h 1 e ^ 1 + h 1 ∂ c 2 ∂ e ^ 1 = ∂ c 1 ∂ h 2 e ^ 2 + h 2 ∂ c 1 ∂ e ^ 2
We rearrange this in two different ways.
Indeed, these two equations are identical:
h 1 ∂ e ^ 1 ∂ c 2 = ∂ h 2 ∂ c 1 e ^ 2 + ( h 2 ∂ e ^ 2 ∂ c 1 − ∂ h 1 ∂ c 2 e ^ 1 ) h 2 ∂ e ^ 2 ∂ c 1 = ∂ h 1 ∂ c 2 e ^ 1 + ( h 1 ∂ e ^ 1 ∂ c 2 − ∂ h 2 ∂ c 1 e ^ 2 ) \begin{aligned}
h_1 \pdv{\vu{e}_1}{c_2}
&= \pdv{h_2}{c_1} \vu{e}_2 + \Big( h_2 \pdv{\vu{e}_2}{c_1} - \pdv{h_1}{c_2} \vu{e}_1 \Big)
\\
h_2 \pdv{\vu{e}_2}{c_1}
&= \pdv{h_1}{c_2} \vu{e}_1 + \Big( h_1 \pdv{\vu{e}_1}{c_2} - \pdv{h_2}{c_1} \vu{e}_2 \Big)
\end{aligned} h 1 ∂ c 2 ∂ e ^ 1 h 2 ∂ c 1 ∂ e ^ 2 = ∂ c 1 ∂ h 2 e ^ 2 + ( h 2 ∂ c 1 ∂ e ^ 2 − ∂ c 2 ∂ h 1 e ^ 1 ) = ∂ c 2 ∂ h 1 e ^ 1 + ( h 1 ∂ c 2 ∂ e ^ 1 − ∂ c 1 ∂ h 2 e ^ 2 )
Recall that all derivatives of e ^ j \vu{e}_j e ^ j are orthogonal to e ^ j \vu{e}_j e ^ j .
Therefore, the first equation’s right-hand side must be orthogonal to e ^ 1 \vu{e}_1 e ^ 1 ,
and the second’s to e ^ 2 \vu{e}_2 e ^ 2 .
We deduce that the parenthesized expressions
are proportional to e ^ 3 \vu{e}_3 e ^ 3 ,
and call the proportionality factors λ 123 \lambda_{123} λ 123 and λ 213 \lambda_{213} λ 213 :
h 1 ∂ e ^ 1 ∂ c 2 = ∂ h 2 ∂ c 1 e ^ 2 + λ 213 e ^ 3 h 2 ∂ e ^ 2 ∂ c 1 = ∂ h 1 ∂ c 2 e ^ 1 + λ 123 e ^ 3 \begin{aligned}
h_1 \pdv{\vu{e}_1}{c_2}
&= \pdv{h_2}{c_1} \vu{e}_2 + \lambda_{213} \vu{e}_3
\\
h_2 \pdv{\vu{e}_2}{c_1}
&= \pdv{h_1}{c_2} \vu{e}_1 + \lambda_{123} \vu{e}_3
\end{aligned} h 1 ∂ c 2 ∂ e ^ 1 h 2 ∂ c 1 ∂ e ^ 2 = ∂ c 1 ∂ h 2 e ^ 2 + λ 213 e ^ 3 = ∂ c 2 ∂ h 1 e ^ 1 + λ 123 e ^ 3
Since these equations are identical,
by comparing the definition of λ 123 \lambda_{123} λ 123 to the other side of the equation,
we see that λ 123 = λ 213 \lambda_{123} = \lambda_{213} λ 123 = λ 213 :
λ 123 e ^ 3 = h 1 ∂ e ^ 1 ∂ c 2 − ∂ h 2 ∂ c 1 e ^ 2 = h 2 ∂ e ^ 2 ∂ c 1 − ∂ h 1 ∂ c 2 e ^ 1 = λ 213 e ^ 3 \begin{aligned}
\lambda_{123} \vu{e}_3
&= h_1 \pdv{\vu{e}_1}{c_2} - \pdv{h_2}{c_1} \vu{e}_2
= h_2 \pdv{\vu{e}_2}{c_1} - \pdv{h_1}{c_2} \vu{e}_1
= \lambda_{213} \vu{e}_3
\end{aligned} λ 123 e ^ 3 = h 1 ∂ c 2 ∂ e ^ 1 − ∂ c 1 ∂ h 2 e ^ 2 = h 2 ∂ c 1 ∂ e ^ 2 − ∂ c 2 ∂ h 1 e ^ 1 = λ 213 e ^ 3
In general, λ j k l = λ k j l \lambda_{jkl} = \lambda_{kjl} λ jk l = λ kj l for j ≠ k ≠ l j \neq k \neq l j = k = l .
Next, we dot-multiply λ 123 \lambda_{123} λ 123 ’s equation by e ^ 3 \vu{e}_3 e ^ 3 ,
using that e ^ 2 ⋅ e ^ 3 = 0 \vu{e}_2 \cdot \vu{e}_3 = 0 e ^ 2 ⋅ e ^ 3 = 0
and consequently ∂ ( e ^ 2 ⋅ e ^ 3 ) / ∂ c 1 = 0 \ipdv{(\vu{e}_2 \cdot \vu{e}_3)}{c_1} = 0 ∂ ( e ^ 2 ⋅ e ^ 3 ) / ∂ c 1 = 0 :
λ 123 = h 2 ∂ e ^ 2 ∂ c 1 ⋅ e ^ 3 − ∂ h 1 ∂ c 2 e ^ 1 ⋅ e ^ 3 = h 2 ∂ e ^ 2 ∂ c 1 ⋅ e ^ 3 = − h 2 h 3 h 3 ∂ e ^ 3 ∂ c 1 ⋅ e ^ 2 = − h 2 h 3 λ 132 \begin{aligned}
\lambda_{123}
&= h_2 \pdv{\vu{e}_2}{c_1} \cdot \vu{e}_3 - \pdv{h_1}{c_2} \vu{e}_1 \cdot \vu{e}_3
= h_2 \pdv{\vu{e}_2}{c_1} \cdot \vu{e}_3
= - h_2 \frac{h_3}{h_3} \pdv{\vu{e}_3}{c_1} \cdot \vu{e}_2
= - \frac{h_2}{h_3} \lambda_{132}
\end{aligned} λ 123 = h 2 ∂ c 1 ∂ e ^ 2 ⋅ e ^ 3 − ∂ c 2 ∂ h 1 e ^ 1 ⋅ e ^ 3 = h 2 ∂ c 1 ∂ e ^ 2 ⋅ e ^ 3 = − h 2 h 3 h 3 ∂ c 1 ∂ e ^ 3 ⋅ e ^ 2 = − h 3 h 2 λ 132
In general, λ j k l = − h k λ j l k / h l \lambda_{jkl} = - h_k \lambda_{jlk} / h_l λ jk l = − h k λ j l k / h l for j ≠ k ≠ l j \neq k \neq l j = k = l .
Combining this fact with λ j k l = λ k j l \lambda_{jkl} = \lambda_{kjl} λ jk l = λ kj l gives:
λ j k l = − h k h l λ j l k = − h k h l λ l j k = h k h l h j h k λ l k j = h j h l λ k l j = − h j h l h l h j λ k j l = − λ j k l \begin{aligned}
\lambda_{jkl}
= - \frac{h_k}{h_l} \lambda_{jlk}
= - \frac{h_k}{h_l} \lambda_{ljk}
= \frac{h_k}{h_l} \frac{h_j}{h_k} \lambda_{lkj}
= \frac{h_j}{h_l} \lambda_{klj}
= - \frac{h_j}{h_l} \frac{h_l}{h_j} \lambda_{kjl}
= - \lambda_{jkl}
\end{aligned} λ jk l = − h l h k λ j l k = − h l h k λ l jk = h l h k h k h j λ l kj = h l h j λ k l j = − h l h j h j h l λ kj l = − λ jk l
But λ j k l = − λ j k l \lambda_{jkl} = -\lambda_{jkl} λ jk l = − λ jk l is only possible if λ j k l \lambda_{jkl} λ jk l is zero.
Thus λ 123 \lambda_{123} λ 123 ’s equation reduces to:
h 2 ∂ e ^ 2 ∂ c 1 = ∂ h 1 ∂ c 2 e ^ 1 ⟹ ∂ e ^ 2 ∂ c 1 = 1 h 2 ∂ h 1 ∂ c 2 e ^ 1 \begin{aligned}
h_2 \pdv{\vu{e}_2}{c_1}
&= \pdv{h_1}{c_2} \vu{e}_1
\qquad \implies \qquad
\pdv{\vu{e}_2}{c_1}
= \frac{1}{h_2} \pdv{h_1}{c_2} \vu{e}_1
\end{aligned} h 2 ∂ c 1 ∂ e ^ 2 = ∂ c 2 ∂ h 1 e ^ 1 ⟹ ∂ c 1 ∂ e ^ 2 = h 2 1 ∂ c 2 ∂ h 1 e ^ 1
This gives us the general expression for ∂ e ^ j / ∂ c k \ipdv{\vu{e}_j}{c_k} ∂ e ^ j / ∂ c k when j ≠ k j \neq k j = k ,
but what about j = k j = k j = k ?
Well, from orthogonality we know:
0 = e ^ 2 ⋅ e ^ 1 = ∂ ∂ c 1 ( e ^ 2 ⋅ e ^ 1 ) = ∂ e ^ 2 ∂ c 1 ⋅ e ^ 1 + e ^ 2 ⋅ ∂ e ^ 1 ∂ c 1 \begin{aligned}
0
= \vu{e}_2 \cdot \vu{e}_1
= \pdv{}{c_1} (\vu{e}_2 \cdot \vu{e}_1)
= \pdv{\vu{e}_2}{c_1} \cdot \vu{e}_1 + \vu{e}_2 \cdot \pdv{\vu{e}_1}{c_1}
\end{aligned} 0 = e ^ 2 ⋅ e ^ 1 = ∂ c 1 ∂ ( e ^ 2 ⋅ e ^ 1 ) = ∂ c 1 ∂ e ^ 2 ⋅ e ^ 1 + e ^ 2 ⋅ ∂ c 1 ∂ e ^ 1
We just calculated one of those terms, so this equation gives us the other:
e ^ 2 ⋅ ∂ e ^ 1 ∂ c 1 = − ∂ e ^ 2 ∂ c 1 ⋅ e ^ 1 = − 1 h 2 ∂ h 1 ∂ c 2 \begin{aligned}
\vu{e}_2 \cdot \pdv{\vu{e}_1}{c_1}
= - \pdv{\vu{e}_2}{c_1} \cdot \vu{e}_1
= - \frac{1}{h_2} \pdv{h_1}{c_2}
\end{aligned} e ^ 2 ⋅ ∂ c 1 ∂ e ^ 1 = − ∂ c 1 ∂ e ^ 2 ⋅ e ^ 1 = − h 2 1 ∂ c 2 ∂ h 1
Now we have the e ^ 2 \vu{e}_2 e ^ 2 -component of ∂ e ^ 1 / ∂ c 1 \ipdv{\vu{e}_1}{c_1} ∂ e ^ 1 / ∂ c 1 ,
and can find the e ^ 3 \vu{e}_3 e ^ 3 -component in the same way:
e ^ 3 ⋅ ∂ e ^ 1 ∂ c 1 = − ∂ e ^ 3 ∂ c 1 ⋅ e ^ 1 = − 1 h 3 ∂ h 1 ∂ c 3 \begin{aligned}
\vu{e}_3 \cdot \pdv{\vu{e}_1}{c_1}
= - \pdv{\vu{e}_3}{c_1} \cdot \vu{e}_1
= - \frac{1}{h_3} \pdv{h_1}{c_3}
\end{aligned} e ^ 3 ⋅ ∂ c 1 ∂ e ^ 1 = − ∂ c 1 ∂ e ^ 3 ⋅ e ^ 1 = − h 3 1 ∂ c 3 ∂ h 1
Adding up the e ^ 2 \vu{e}_2 e ^ 2 - and e ^ 3 \vu{e}_3 e ^ 3 -components gives the desired formula.
There is no e ^ 1 \vu{e}_1 e ^ 1 -component
because ∂ e ^ 1 / ∂ c 1 \ipdv{\vu{e}_1}{c_1} ∂ e ^ 1 / ∂ c 1 must be orthogonal to e ^ 1 \vu{e}_1 e ^ 1 .
Gradient of a scalar
The gradient ∇ f \nabla f ∇ f of a scalar field f f f
has the following components in ( c 1 , c 2 , c 3 ) (c_1, c_2, c_3) ( c 1 , c 2 , c 3 ) :
( ∇ f ) j = 1 h j ∂ f ∂ c j \begin{aligned}
\boxed{
(\nabla f)_j
= \frac{1}{h_j} \pdv{f}{c_j}
}
\end{aligned} ( ∇ f ) j = h j 1 ∂ c j ∂ f
When this index notation is written out in full,
the gradient ∇ f \nabla f ∇ f becomes:
∇ f = 1 h 1 ∂ f ∂ c 1 e ^ 1 + 1 h 2 ∂ f ∂ c 2 e ^ 2 + 1 h 3 ∂ f ∂ c 3 e ^ 3 \begin{aligned}
\nabla f
= \frac{1}{h_1} \pdv{f}{c_1} \vu{e}_1
+ \frac{1}{h_2} \pdv{f}{c_2} \vu{e}_2
+ \frac{1}{h_3} \pdv{f}{c_3} \vu{e}_3
\end{aligned} ∇ f = h 1 1 ∂ c 1 ∂ f e ^ 1 + h 2 1 ∂ c 2 ∂ f e ^ 2 + h 3 1 ∂ c 3 ∂ f e ^ 3
Proof
Proof.
For any unit vector u ^ \vu{u} u ^ , we can project ∇ f \nabla f ∇ f onto it
to get the component of ∇ f \nabla f ∇ f along u ^ \vu{u} u ^ .
Let us choose u ^ = e ^ 1 \vu{u} = \vu{e}_1 u ^ = e ^ 1 , then such a projection gives:
∇ f ⋅ e ^ 1 = ( ∂ f ∂ x e ^ x + ∂ f ∂ y e ^ y + ∂ f ∂ z e ^ z ) ⋅ 1 h 1 ( ∂ x ∂ c 1 e ^ x + ∂ y ∂ c 1 e ^ y + ∂ z ∂ c 1 e ^ z ) = 1 h 1 ( ∂ f ∂ x ∂ x ∂ c 1 + ∂ f ∂ y ∂ y ∂ c 1 + ∂ f ∂ z ∂ z ∂ c 1 ) = 1 h 1 ∂ f ∂ c 1 \begin{aligned}
\nabla f \cdot \vu{e}_1
&= \bigg( \pdv{f}{x} \vu{e}_x + \pdv{f}{y} \vu{e}_y + \pdv{f}{z} \vu{e}_z \bigg)
\cdot \frac{1}{h_1} \bigg( \pdv{x}{c_1} \vu{e}_x + \pdv{y}{c_1} \vu{e}_y + \pdv{z}{c_1} \vu{e}_z \bigg)
\\
&= \frac{1}{h_1} \bigg( \pdv{f}{x} \pdv{x}{c_1} + \pdv{f}{y} \pdv{y}{c_1} + \pdv{f}{z} \pdv{z}{c_1} \bigg)
\\
&= \frac{1}{h_1} \pdv{f}{c_1}
\end{aligned} ∇ f ⋅ e ^ 1 = ( ∂ x ∂ f e ^ x + ∂ y ∂ f e ^ y + ∂ z ∂ f e ^ z ) ⋅ h 1 1 ( ∂ c 1 ∂ x e ^ x + ∂ c 1 ∂ y e ^ y + ∂ c 1 ∂ z e ^ z ) = h 1 1 ( ∂ x ∂ f ∂ c 1 ∂ x + ∂ y ∂ f ∂ c 1 ∂ y + ∂ z ∂ f ∂ c 1 ∂ z ) = h 1 1 ∂ c 1 ∂ f
And we can do the same for e ^ 2 \vu{e}_2 e ^ 2 and e ^ 3 \vu{e}_3 e ^ 3 ,
yielding analogous results:
∇ f ⋅ e ^ 2 = 1 h 2 ∂ f ∂ c 2 ∇ f ⋅ e ^ 3 = 1 h 3 ∂ f ∂ c 3 \begin{aligned}
\nabla f \cdot \vu{e}_2
= \frac{1}{h_2} \pdv{f}{c_2}
\qquad \qquad
\nabla f \cdot \vu{e}_3
= \frac{1}{h_3} \pdv{f}{c_3}
\end{aligned} ∇ f ⋅ e ^ 2 = h 2 1 ∂ c 2 ∂ f ∇ f ⋅ e ^ 3 = h 3 1 ∂ c 3 ∂ f
Finally, to express ∇ f \nabla f ∇ f in the new coordinate system ( c 1 , c 2 , c 3 ) (c_1, c_2, c_3) ( c 1 , c 2 , c 3 ) ,
we simply combine these projections for all the basis vectors:
∇ f = ( ∇ f ⋅ e ^ 1 ) e ^ 1 + ( ∇ f ⋅ e ^ 2 ) e ^ 2 + ( ∇ f ⋅ e ^ 3 ) e ^ 3 \begin{aligned}
\nabla f
= (\nabla f \cdot \vu{e}_1) \vu{e}_1
+ (\nabla f \cdot \vu{e}_2) \vu{e}_2
+ (\nabla f \cdot \vu{e}_3) \vu{e}_3
\end{aligned} ∇ f = ( ∇ f ⋅ e ^ 1 ) e ^ 1 + ( ∇ f ⋅ e ^ 2 ) e ^ 2 + ( ∇ f ⋅ e ^ 3 ) e ^ 3
Divergence of a vector
The divergence of a vector field V = V 1 e ^ 1 + V 2 e ^ 2 + V 3 e ^ 3 \vb{V} = V_1 \vu{e}_1 + V_2 \vu{e}_2 + V_3 \vu{e}_3 V = V 1 e ^ 1 + V 2 e ^ 2 + V 3 e ^ 3
is given in ( c 1 , c 2 , c 3 ) (c_1, c_2, c_3) ( c 1 , c 2 , c 3 ) by:
∇ ⋅ V = ∑ j 1 H ∂ ∂ c j ( H V j h j ) \begin{aligned}
\boxed{
\nabla \cdot \vb{V}
= \sum_{j} \frac{1}{H} \pdv{}{c_j} \bigg( \frac{H V_j}{h_j} \bigg)
}
\end{aligned} ∇ ⋅ V = j ∑ H 1 ∂ c j ∂ ( h j H V j )
Where H ≡ h 1 h 2 h 3 H \equiv h_1 h_2 h_3 H ≡ h 1 h 2 h 3 .
When this index notation is written out in full, it becomes:
∇ ⋅ V = 1 h 1 h 2 h 3 ( ∂ ∂ c 1 ( h 2 h 3 V 1 ) + ∂ ∂ c 2 ( h 1 h 3 V 2 ) + ∂ ∂ c 3 ( h 1 h 2 V 3 ) ) \begin{aligned}
\nabla \cdot \vb{V}
= \frac{1}{h_1 h_2 h_3}
\bigg( \pdv{}{c_1} (h_2 h_3 V_1) + \pdv{}{c_2} (h_1 h_3 V_2) + \pdv{}{c_3} (h_1 h_2 V_3) \bigg)
\end{aligned} ∇ ⋅ V = h 1 h 2 h 3 1 ( ∂ c 1 ∂ ( h 2 h 3 V 1 ) + ∂ c 2 ∂ ( h 1 h 3 V 2 ) + ∂ c 3 ∂ ( h 1 h 2 V 3 ) )
Proof 1
Proof 1.
From our earlier calculation of ∇ f \nabla f ∇ f ,
we know how to express the del ∇ \nabla ∇ in ( c 1 , c 2 , c 3 ) (c_1, c_2, c_3) ( c 1 , c 2 , c 3 ) .
Now we simply take the dot product of ∇ \nabla ∇ and V \vb{V} V :
∇ ⋅ V = ( e ^ 1 1 h 1 ∂ ∂ c 1 + e ^ 2 1 h 2 ∂ ∂ c 2 + e ^ 3 1 h 3 ∂ ∂ c 3 ) ⋅ ( V 1 e ^ 1 + V 2 e ^ 2 + V 3 e ^ 3 ) = ( ∑ j e ^ j 1 h j ∂ ∂ c j ) ⋅ ( ∑ k V k e ^ k ) = ∑ j k e ^ j ⋅ 1 h j ∂ ∂ c j ( V k e ^ k ) = ∑ j k ( e ^ j ⋅ e ^ k ) 1 h j ∂ V k ∂ c j + ∑ j k ( e ^ j ⋅ ∂ e ^ k ∂ c j ) V k h j \begin{aligned}
\nabla \cdot \vb{V}
&= \bigg( \vu{e}_1 \frac{1}{h_1} \pdv{}{c_1} + \vu{e}_2 \frac{1}{h_2} \pdv{}{c_2} + \vu{e}_3 \frac{1}{h_3} \pdv{}{c_3} \bigg)
\cdot \bigg( V_1 \vu{e}_1 + V_2 \vu{e}_2 + V_3 \vu{e}_3 \bigg)
\\
&= \bigg( \sum_{j} \vu{e}_j \frac{1}{h_j} \pdv{}{c_j} \bigg) \cdot \bigg( \sum_{k} V_k \vu{e}_k \bigg)
\\
&= \sum_{jk} \vu{e}_j \cdot \frac{1}{h_j} \pdv{}{c_j} (V_k \vu{e}_k)
\\
&= \sum_{jk} (\vu{e}_j \cdot \vu{e}_k) \frac{1}{h_j} \pdv{V_k}{c_j}
+ \sum_{jk} \Big( \vu{e}_j \cdot \pdv{\vu{e}_k}{c_j} \Big) \frac{V_k}{h_j}
\end{aligned} ∇ ⋅ V = ( e ^ 1 h 1 1 ∂ c 1 ∂ + e ^ 2 h 2 1 ∂ c 2 ∂ + e ^ 3 h 3 1 ∂ c 3 ∂ ) ⋅ ( V 1 e ^ 1 + V 2 e ^ 2 + V 3 e ^ 3 ) = ( j ∑ e ^ j h j 1 ∂ c j ∂ ) ⋅ ( k ∑ V k e ^ k ) = jk ∑ e ^ j ⋅ h j 1 ∂ c j ∂ ( V k e ^ k ) = jk ∑ ( e ^ j ⋅ e ^ k ) h j 1 ∂ c j ∂ V k + jk ∑ ( e ^ j ⋅ ∂ c j ∂ e ^ k ) h j V k
Substituting our expression for the derivatives of the local basis vectors, we find:
∇ ⋅ V = ∑ j k ( e ^ j ⋅ e ^ k ) 1 h j ∂ V k ∂ c j + ∑ j k e ^ j ⋅ ( 1 h k ∂ h j ∂ c k e ^ j − δ j k ∑ l 1 h l ∂ h k ∂ c l e ^ l ) V k h j = ∑ j k ( e ^ j ⋅ e ^ k ) 1 h j ∂ V k ∂ c j + ∑ j k ( e ^ j ⋅ e ^ j ) V k h j h k ∂ h j ∂ c k − ∑ j l ( e ^ j ⋅ e ^ l ) V j h j h l ∂ h j ∂ c l = ∑ j 1 h j ∂ V j ∂ c j + ∑ j k V k h j h k ∂ h j ∂ c k − ∑ j V j h j h j ∂ h j ∂ c j = ∑ j 1 h j ∂ V j ∂ c j + ∑ j ∑ k ≠ j V k h j h k ∂ h j ∂ c k \begin{aligned}
\nabla \cdot \vb{V}
&= \sum_{jk} (\vu{e}_j \cdot \vu{e}_k) \frac{1}{h_j} \pdv{V_k}{c_j}
+ \sum_{jk} \vu{e}_j
\cdot \bigg( \frac{1}{h_k} \pdv{h_j}{c_k} \vu{e}_j - \delta_{jk} \sum_{l} \frac{1}{h_l} \pdv{h_k}{c_l} \vu{e}_l \bigg) \frac{V_k}{h_j}
\\
&= \sum_{jk} (\vu{e}_j \cdot \vu{e}_k) \frac{1}{h_j} \pdv{V_k}{c_j}
+ \sum_{jk} (\vu{e}_j \cdot \vu{e}_j) \frac{V_k}{h_j h_k} \pdv{h_j}{c_k}
- \sum_{jl} (\vu{e}_j \cdot \vu{e}_l) \frac{V_j}{h_j h_l} \pdv{h_j}{c_l}
\\
&= \sum_{j} \frac{1}{h_j} \pdv{V_j}{c_j}
+ \sum_{jk} \frac{V_k}{h_j h_k} \pdv{h_j}{c_k}
- \sum_{j} \frac{V_j}{h_j h_j} \pdv{h_j}{c_j}
\\
&= \sum_{j} \frac{1}{h_j} \pdv{V_j}{c_j}
+ \sum_{j} \sum_{k \neq j} \frac{V_k}{h_j h_k} \pdv{h_j}{c_k}
\\
\end{aligned} ∇ ⋅ V = jk ∑ ( e ^ j ⋅ e ^ k ) h j 1 ∂ c j ∂ V k + jk ∑ e ^ j ⋅ ( h k 1 ∂ c k ∂ h j e ^ j − δ jk l ∑ h l 1 ∂ c l ∂ h k e ^ l ) h j V k = jk ∑ ( e ^ j ⋅ e ^ k ) h j 1 ∂ c j ∂ V k + jk ∑ ( e ^ j ⋅ e ^ j ) h j h k V k ∂ c k ∂ h j − j l ∑ ( e ^ j ⋅ e ^ l ) h j h l V j ∂ c l ∂ h j = j ∑ h j 1 ∂ c j ∂ V j + jk ∑ h j h k V k ∂ c k ∂ h j − j ∑ h j h j V j ∂ c j ∂ h j = j ∑ h j 1 ∂ c j ∂ V j + j ∑ k = j ∑ h j h k V k ∂ c k ∂ h j
Where we noticed that the latter two terms cancel out if k = j k = j k = j .
Now, to proceed, it is easiest to just write out the index notation:
∇ ⋅ V = ∑ j 1 h j ∂ V j ∂ c j + ∑ j ∑ k ≠ j V k h j h k ∂ h j ∂ c k = 1 h 1 ∂ V 1 ∂ c 1 + V 1 h 1 h 2 ∂ h 2 ∂ c 1 + V 1 h 1 h 3 ∂ h 3 ∂ c 1 + V 2 h 1 h 2 ∂ h 1 ∂ c 2 + 1 h 2 ∂ V 2 ∂ c 2 + V 2 h 2 h 3 ∂ h 3 ∂ c 2 + V 3 h 1 h 3 ∂ h 1 ∂ c 3 + V 3 h 2 h 3 ∂ h 2 ∂ c 3 + 1 h 3 ∂ V 3 ∂ c 3 = 1 h 1 h 2 h 3 ( h 2 h 3 ∂ V 1 ∂ c 1 + h 3 V 1 ∂ h 2 ∂ c 1 + h 2 V 1 ∂ h 3 ∂ c 1 + h 3 V 2 ∂ h 1 ∂ c 2 + h 1 h 3 ∂ V 2 ∂ c 2 + h 1 V 2 ∂ h 3 ∂ c 2 + h 2 V 3 ∂ h 1 ∂ c 3 + h 1 V 3 ∂ h 2 ∂ c 3 + h 1 h 2 ∂ V 3 ∂ c 3 ) \begin{aligned}
\nabla \cdot \vb{V}
&= \sum_{j} \frac{1}{h_j} \pdv{V_j}{c_j} + \sum_{j} \sum_{k \neq j} \frac{V_k}{h_j h_k} \pdv{h_j}{c_k}
\\
&= \quad \frac{1}{h_1} \pdv{V_1}{c_1} + \frac{V_1}{h_1 h_2} \pdv{h_2}{c_1} + \frac{V_1}{h_1 h_3} \pdv{h_3}{c_1}
\\
&\quad\: + \frac{V_2}{h_1 h_2} \pdv{h_1}{c_2} + \frac{1}{h_2} \pdv{V_2}{c_2} + \frac{V_2}{h_2 h_3} \pdv{h_3}{c_2}
\\
&\quad\: + \frac{V_3}{h_1 h_3} \pdv{h_1}{c_3} + \frac{V_3}{h_2 h_3} \pdv{h_2}{c_3} + \frac{1}{h_3} \pdv{V_3}{c_3}
\\
&= \frac{1}{h_1 h_2 h_3} \bigg( h_2 h_3 \pdv{V_1}{c_1} + h_3 V_1 \pdv{h_2}{c_1} + h_2 V_1 \pdv{h_3}{c_1}
\\
&\qquad\qquad + h_3 V_2 \pdv{h_1}{c_2} + h_1 h_3 \pdv{V_2}{c_2} + h_1 V_2 \pdv{h_3}{c_2}
\\
&\qquad\qquad + h_2 V_3 \pdv{h_1}{c_3} + h_1 V_3 \pdv{h_2}{c_3} + h_1 h_2 \pdv{V_3}{c_3} \bigg)
\end{aligned} ∇ ⋅ V = j ∑ h j 1 ∂ c j ∂ V j + j ∑ k = j ∑ h j h k V k ∂ c k ∂ h j = h 1 1 ∂ c 1 ∂ V 1 + h 1 h 2 V 1 ∂ c 1 ∂ h 2 + h 1 h 3 V 1 ∂ c 1 ∂ h 3 + h 1 h 2 V 2 ∂ c 2 ∂ h 1 + h 2 1 ∂ c 2 ∂ V 2 + h 2 h 3 V 2 ∂ c 2 ∂ h 3 + h 1 h 3 V 3 ∂ c 3 ∂ h 1 + h 2 h 3 V 3 ∂ c 3 ∂ h 2 + h 3 1 ∂ c 3 ∂ V 3 = h 1 h 2 h 3 1 ( h 2 h 3 ∂ c 1 ∂ V 1 + h 3 V 1 ∂ c 1 ∂ h 2 + h 2 V 1 ∂ c 1 ∂ h 3 + h 3 V 2 ∂ c 2 ∂ h 1 + h 1 h 3 ∂ c 2 ∂ V 2 + h 1 V 2 ∂ c 2 ∂ h 3 + h 2 V 3 ∂ c 3 ∂ h 1 + h 1 V 3 ∂ c 3 ∂ h 2 + h 1 h 2 ∂ c 3 ∂ V 3 )
Which can clearly be rewritten with the product rule,
leading to the desired formula.
Boas gives an alternative proof, which is shorter but more specialized:
Proof 2
Proof 2.
We take the divergence of the c 1 c_1 c 1 -component of V \vb{V} V and expand it:
∇ ⋅ ( V 1 e ^ 1 ) = ∇ ⋅ ( ( h 2 h 3 V 1 ) ( e ^ 1 h 2 h 3 ) ) = ∇ ( h 2 h 3 V 1 ) ⋅ ( e ^ 1 h 2 h 3 ) + ( h 2 h 3 V 1 ) ( ∇ ⋅ ( e ^ 1 h 2 h 3 ) ) \begin{aligned}
\nabla \cdot (V_1 \vu{e}_1)
&= \nabla \cdot \bigg( \Big( h_2 h_3 V_1 \Big) \Big( \frac{\vu{e}_1}{h_2 h_3} \Big) \bigg)
\\
&= \nabla (h_2 h_3 V_1) \cdot \Big( \frac{\vu{e}_1}{h_2 h_3} \Big)
+ (h_2 h_3 V_1) \bigg( \nabla \cdot \Big( \frac{\vu{e}_1}{h_2 h_3} \Big) \bigg)
\end{aligned} ∇ ⋅ ( V 1 e ^ 1 ) = ∇ ⋅ ( ( h 2 h 3 V 1 ) ( h 2 h 3 e ^ 1 ) ) = ∇ ( h 2 h 3 V 1 ) ⋅ ( h 2 h 3 e ^ 1 ) + ( h 2 h 3 V 1 ) ( ∇ ⋅ ( h 2 h 3 e ^ 1 ) )
The latter term is zero, because
in any orthogonal basis e ^ 2 × e ^ 3 = e ^ 1 \vu{e}_2 \cross \vu{e}_3 = \vu{e}_1 e ^ 2 × e ^ 3 = e ^ 1 ,
and according to our gradient formula we have ∇ c 2 = e ^ 2 / h 2 \nabla c_2 = \vu{e}_2 / h_2 ∇ c 2 = e ^ 2 / h 2 etc., so:
∇ ⋅ ( e ^ 1 h 2 h 3 ) = ∇ ⋅ ( e ^ 2 h 2 × e ^ 3 h 3 ) = ∇ ⋅ ( ∇ c 2 × ∇ c 3 ) = ∇ c 3 ⋅ ( ∇ × ∇ c 2 ) − ∇ c 2 ⋅ ( ∇ × ∇ c 3 ) = 0 \begin{aligned}
\nabla \cdot \bigg( \frac{\vu{e}_1}{h_2 h_3} \bigg)
&= \nabla \cdot \bigg( \frac{\vu{e}_2}{h_2} \cross \frac{\vu{e}_3}{h_3} \bigg)
\\
&= \nabla \cdot \big( \nabla c_2 \cross \nabla c_3 \big)
\\
&= \nabla c_3 \cdot (\nabla \cross \nabla c_2) - \nabla c_2 \cdot (\nabla \cross \nabla c_3)
\\
&= 0
\end{aligned} ∇ ⋅ ( h 2 h 3 e ^ 1 ) = ∇ ⋅ ( h 2 e ^ 2 × h 3 e ^ 3 ) = ∇ ⋅ ( ∇ c 2 × ∇ c 3 ) = ∇ c 3 ⋅ ( ∇ × ∇ c 2 ) − ∇ c 2 ⋅ ( ∇ × ∇ c 3 ) = 0
Where we used a vector identity and the fact that the curl of a gradient must vanish.
We are thus left with the former term,
to which we apply our gradient formula again,
where only the e ^ 1 \vu{e}_1 e ^ 1 -term survives due to the dot product and orthogonality:
∇ ⋅ ( V 1 e ^ 1 ) = ∇ ( h 2 h 3 V 1 ) ⋅ e ^ 1 h 2 h 3 = 1 h 1 h 2 h 3 ∂ ∂ c 1 ( h 2 h 3 V 1 ) \begin{aligned}
\nabla \cdot (V_1 \vu{e}_1)
&= \nabla (h_2 h_3 V_1) \cdot \frac{\vu{e}_1}{h_2 h_3}
\\
&= \frac{1}{h_1 h_2 h_3} \pdv{}{c_1} (h_2 h_3 V_1)
\end{aligned} ∇ ⋅ ( V