Categories:
Mathematics ,
Physics .
Parseval’s theorem
Parseval’s theorem is a relation between the inner product of two functions f ( x ) f(x) f ( x ) and g ( x ) g(x) g ( x ) ,
and the inner product of their Fourier transforms
f ~ ( k ) \tilde{f}(k) f ~ ( k ) and g ~ ( k ) \tilde{g}(k) g ~ ( k ) .
There are two equivalent ways of stating it,
where A A A , B B B , and s s s are constants from the FT’s definition:
⟨ f ( x ) ∣ g ( x ) ⟩ = 2 π B 2 ∣ s ∣ ⟨ f ~ ( k ) ∣ g ~ ( k ) ⟩ ⟨ f ~ ( k ) ∣ g ~ ( k ) ⟩ = 2 π A 2 ∣ s ∣ ⟨ f ( x ) ∣ g ( x ) ⟩ \begin{aligned}
\boxed{
\begin{aligned}
\inprod{f(x)}{g(x)}
&= \frac{2 \pi B^2}{|s|} \inprod{\tilde{f}(k)}{\tilde{g}(k)}
\\
\inprod{\tilde{f}(k)}{\tilde{g}(k)}
&= \frac{2 \pi A^2}{|s|} \inprod{f(x)}{g(x)}
\end{aligned}
}
\end{aligned} ⟨ f ( x ) ∣ g ( x ) ⟩ ⟨ f ~ ( k ) ∣ g ~ ( k ) ⟩ = ∣ s ∣ 2 π B 2 ⟨ f ~ ( k ) ∣ g ~ ( k ) ⟩ = ∣ s ∣ 2 π A 2 ⟨ f ( x ) ∣ g ( x ) ⟩
Proof
Proof.
We insert the inverse FT into the definition of the inner product:
⟨ f ∣ g ⟩ = ∫ − ∞ ∞ ( F ^ − 1 { f ~ ( k ) } ) ∗ F ^ − 1 { g ~ ( k ) } d x = B 2 ∫ ( ∫ f ~ ∗ ( k ′ ) e i s k ′ x d k ′ ) ( ∫ g ~ ( k ) e − i s k x d k ) d x = 2 π B 2 ∬ f ~ ∗ ( k ′ ) g ~ ( k ) ( 1 2 π ∫ − ∞ ∞ e i s x ( k ′ − k ) d x ) d k ′ d k = 2 π B 2 ∬ f ~ ∗ ( k ′ ) g ~ ( k ) δ ( s ( k ′ − k ) ) d k ′ d k = 2 π B 2 ∣ s ∣ ∫ − ∞ ∞ f ~ ∗ ( k ) g ~ ( k ) d k = 2 π B 2 ∣ s ∣ ⟨ f ~ ∣ g ~ ⟩ \begin{aligned}
\inprod{f}{g}
&= \int_{-\infty}^\infty \big( \hat{\mathcal{F}}^{-1}\{\tilde{f}(k)\}\big)^* \: \hat{\mathcal{F}}^{-1}\{\tilde{g}(k)\} \dd{x}
\\
&= B^2 \int
\Big( \int \tilde{f}^*(k') \: e^{i s k' x} \dd{k'} \Big)
\Big( \int \tilde{g}(k) \: e^{- i s k x} \dd{k} \Big)
\dd{x}
\\
&= 2 \pi B^2 \iint \tilde{f}^*(k') \: \tilde{g}(k) \Big( \frac{1}{2 \pi}
\int_{-\infty}^\infty e^{i s x (k' - k)} \dd{x} \Big) \dd{k'} \dd{k}
\\
&= 2 \pi B^2 \iint \tilde{f}^*(k') \: \tilde{g}(k) \: \delta\big(s (k' \!-\! k)\big) \dd{k'} \dd{k}
\\
&= \frac{2 \pi B^2}{|s|} \int_{-\infty}^\infty \tilde{f}^*(k) \: \tilde{g}(k) \dd{k}
= \frac{2 \pi B^2}{|s|} \inprod{\tilde{f}}{\tilde{g}}
\end{aligned} ⟨ f ∣ g ⟩ = ∫ − ∞ ∞ ( F ^ − 1 { f ~ ( k )} ) ∗ F ^ − 1 { g ~ ( k )} d x = B 2 ∫ ( ∫ f ~ ∗ ( k ′ ) e i s k ′ x d k ′ ) ( ∫ g ~ ( k ) e − i s k x d k ) d x = 2 π B 2 ∬ f ~ ∗ ( k ′ ) g ~ ( k ) ( 2 π 1 ∫ − ∞ ∞ e i s x ( k ′ − k ) d x ) d k ′ d k = 2 π B 2 ∬ f ~ ∗ ( k ′ ) g ~ ( k ) δ ( s ( k ′ − k ) ) d k ′ d k = ∣ s ∣ 2 π B 2 ∫ − ∞ ∞ f ~ ∗ ( k ) g ~ ( k ) d k = ∣ s ∣ 2 π B 2 ⟨ f ~ ∣ g ~ ⟩
Where δ ( k ) \delta(k) δ ( k ) is the Dirac delta function .
Note that we can equally well do this proof in the opposite direction,
which yields an equivalent result:
⟨ f ~ ∣ g ~ ⟩ = ∫ − ∞ ∞ ( F ^ { f ( x ) } ) ∗ F ^ { g ( x ) } d k = A 2 ∫ ( ∫ f ∗ ( x ′ ) e − i s k x ′ d x ′ ) ( ∫ g ( x ) e i s k x d x ) d k = 2 π A 2 ∬ f ∗ ( x ′ ) g ( x ) ( 1 2 π ∫ − ∞ ∞ e i s k ( x − x ′ ) d k ) d x ′ d x = 2 π A 2 ∬ f ∗ ( x ′ ) g ( x ) δ ( s ( x − x ′ ) ) d x ′ d x = 2 π A 2 ∣ s ∣ ∫ − ∞ ∞ f ∗ ( x ) g ( x ) d x = 2 π A 2 ∣ s ∣ ⟨ f ∣ g ⟩ \begin{aligned}
\inprod{\tilde{f}}{\tilde{g}}
&= \int_{-\infty}^\infty \big( \hat{\mathcal{F}}\{f(x)\}\big)^* \: \hat{\mathcal{F}}\{g(x)\} \dd{k}
\\
&= A^2 \int
\Big( \int f^*(x') \: e^{- i s k x'} \dd{x'} \Big)
\Big( \int g(x) \: e^{i s k x} \dd{x} \Big)
\dd{k}
\\
&= 2 \pi A^2 \iint f^*(x') \: g(x) \Big( \frac{1}{2 \pi}
\int_{-\infty}^\infty e^{i s k (x - x')} \dd{k} \Big) \dd{x'} \dd{x}
\\
&= 2 \pi A^2 \iint f^*(x') \: g(x) \: \delta\big(s (x \!-\! x')\big) \dd{x'} \dd{x}
\\
&= \frac{2 \pi A^2}{|s|} \int_{-\infty}^\infty f^*(x) \: g(x) \dd{x}
= \frac{2 \pi A^2}{|s|} \inprod{f}{g}
\end{aligned} ⟨ f ~ ∣ g ~ ⟩ = ∫ − ∞ ∞ ( F ^ { f ( x )} ) ∗ F ^ { g ( x )} d k = A 2 ∫ ( ∫ f ∗ ( x ′ ) e − i s k x ′ d x ′ ) ( ∫ g ( x ) e i s k x d x ) d k = 2 π A 2 ∬ f ∗ ( x ′ ) g ( x ) ( 2 π 1 ∫ − ∞ ∞ e i s k ( x − x ′ ) d k ) d x ′ d x = 2 π A 2 ∬ f ∗ ( x ′ ) g ( x ) δ ( s ( x − x ′ ) ) d x ′ d x = ∣ s ∣ 2 π A 2 ∫ − ∞ ∞ f ∗ ( x ) g ( x ) d x = ∣ s ∣ 2 π A 2 ⟨ f ∣ g ⟩
For this reason, physicists like to define the Fourier transform
with A = B = 1 / 2 π A\!=\!B\!=\!1 / \sqrt{2\pi} A = B = 1/ 2 π and ∣ s ∣ = 1 |s|\!=\!1 ∣ s ∣ = 1 ,
because then it nicely preserves the functions’ normalization.
References
O. Bang,
Applied mathematics for physicists: lecture notes , 2019,
unpublished.