Categories:
Physics ,
Quantum mechanics .
Selection rules
In quantum mechanics, it is often necessary to evaluate
matrix elements of the following form,
where ℓ \ell ℓ and m m m respectively represent
the total angular momentum and its z z z -component:
⟨ f ∣ O ^ ∣ i ⟩ = ⟨ ℓ f m f ∣ O ^ ∣ ℓ i m i ⟩ \begin{aligned}
\matrixel{f}{\hat{O}}{i}
= \matrixel{\ell_f m_f}{\hat{O}}{\ell_i m_i}
\end{aligned} ⟨ f ∣ O ^ ∣ i ⟩ = ⟨ ℓ f m f ∣ O ^ ∣ ℓ i m i ⟩
Where O ^ \hat{O} O ^ is an operator, ∣ i ⟩ \Ket{i} ∣ i ⟩ is an initial state, and
∣ f ⟩ \Ket{f} ∣ f ⟩ is a final state (usually at least; ∣ i ⟩ \Ket{i} ∣ i ⟩ and ∣ f ⟩ \Ket{f} ∣ f ⟩
can be any states). Selection rules are requirements on the relations
between ℓ i \ell_i ℓ i , ℓ f \ell_f ℓ f , m i m_i m i and m f m_f m f , which, if not met,
guarantee that the above matrix element is zero.
Parity rules
Let O ^ \hat{O} O ^ denote any operator which is odd under spatial inversion
(parity):
Π ^ † O ^ Π ^ = − O ^ \begin{aligned}
\hat{\Pi}^\dagger \hat{O} \hat{\Pi} = - \hat{O}
\end{aligned} Π ^ † O ^ Π ^ = − O ^
Where Π ^ \hat{\Pi} Π ^ is the parity operator.
We wrap this property of O ^ \hat{O} O ^
in the states ∣ ℓ f m f ⟩ \Ket{\ell_f m_f} ∣ ℓ f m f ⟩ and ∣ ℓ i m i ⟩ \Ket{\ell_i m_i} ∣ ℓ i m i ⟩ :
⟨ ℓ f m f ∣ O ^ ∣ ℓ i m i ⟩ = − ⟨ ℓ f m f ∣ Π ^ † O ^ Π ^ ∣ ℓ i m i ⟩ = − ⟨ ℓ f m f ∣ ( − 1 ) ℓ f O ^ ( − 1 ) ℓ i ∣ ℓ i m i ⟩ = ( − 1 ) ℓ f + ℓ i + 1 ⟨ ℓ f m f ∣ O ^ ∣ ℓ i m i ⟩ \begin{aligned}
\matrixel{\ell_f m_f}{\hat{O}}{\ell_i m_i}
&= - \matrixel{\ell_f m_f}{\hat{\Pi}^\dagger \hat{O} \hat{\Pi}}{\ell_i m_i}
\\
&= - \matrixel{\ell_f m_f}{(-1)^{\ell_f} \hat{O} (-1)^{\ell_i}}{\ell_i m_i}
\\
&= (-1)^{\ell_f + \ell_i + 1} \matrixel{\ell_f m_f}{\hat{O}}{\ell_i m_i}
\end{aligned} ⟨ ℓ f m f ∣ O ^ ∣ ℓ i m i ⟩ = − ⟨ ℓ f m f ∣ Π ^ † O ^ Π ^ ∣ ℓ i m i ⟩ = − ⟨ ℓ f m f ∣ ( − 1 ) ℓ f O ^ ( − 1 ) ℓ i ∣ ℓ i m i ⟩ = ( − 1 ) ℓ f + ℓ i + 1 ⟨ ℓ f m f ∣ O ^ ∣ ℓ i m i ⟩
Which clearly can only be true if the exponent is even,
so Δ ℓ ≡ ℓ f − ℓ i \Delta \ell \equiv \ell_f - \ell_i Δ ℓ ≡ ℓ f − ℓ i must be odd.
This leads to the following selection rule,
often referred to as Laporte’s rule :
Δ ℓ is odd \begin{aligned}
\boxed{
\Delta \ell \:\:\text{is odd}
}
\end{aligned} Δ ℓ is odd
If this is not the case,
then the only possible way that the above equation can be satisfied
is if the matrix element vanishes ⟨ ℓ f m f ∣ O ^ ∣ ℓ i m i ⟩ = 0 \matrixel{\ell_f m_f}{\hat{O}}{\ell_i m_i} = 0 ⟨ ℓ f m f ∣ O ^ ∣ ℓ i m i ⟩ = 0 .
We can derive an analogous rule for
any operator E ^ \hat{E} E ^ which is even under parity:
Π ^ † E ^ Π ^ = E ^ ⟹ Δ ℓ is even \begin{aligned}
\hat{\Pi}^\dagger \hat{E} \hat{\Pi} = \hat{E}
\quad \implies \quad
\boxed{
\Delta \ell \:\:\text{is even}
}
\end{aligned} Π ^ † E ^ Π ^ = E ^ ⟹ Δ ℓ is even
Dipole rules
Arguably the most common operator found in such matrix elements
is a position vector operator, like r ^ \vu{r} r ^ or x ^ \hat{x} x ^ ,
and the associated selection rules are known as dipole rules .
For the z z z -component of angular momentum m m m we have the following:
Δ m = 0 o r ± 1 \begin{aligned}
\boxed{
\Delta m = 0 \:\:\mathrm{or}\: \pm 1
}
\end{aligned} Δ m = 0 or ± 1
Proof
Proof.
We know that the angular momentum z z z -component operator L ^ z \hat{L}_z L ^ z satisfies:
[ L ^ z , x ^ ] = i ℏ y ^ [ L ^ z , y ^ ] = − i ℏ x ^ [ L ^ z , z ^ ] = 0 \begin{aligned}
\comm{\hat{L}_z}{\hat{x}} = i \hbar \hat{y}
\qquad
\comm{\hat{L}_z}{\hat{y}} = - i \hbar \hat{x}
\qquad
\comm{\hat{L}_z}{\hat{z}} = 0
\end{aligned} [ L ^ z , x ^ ] = i ℏ y ^ [ L ^ z , y ^ ] = − i ℏ x ^ [ L ^ z , z ^ ] = 0
We take the first relation,
and wrap it in ⟨ ℓ f m f ∣ \Bra{\ell_f m_f} ⟨ ℓ f m f ∣ and ∣ ℓ i m i ⟩ \Ket{\ell_i m_i} ∣ ℓ i m i ⟩ , giving:
i ℏ ⟨ ℓ f m f ∣ y ^ ∣ ℓ i m i ⟩ = ⟨ ℓ f m f ∣ L ^ z x ^ ∣ ℓ i m i ⟩ − ⟨ ℓ f m f ∣ x ^ L ^ z ∣ ℓ i m i ⟩ = ℏ m f ⟨ ℓ f m f ∣ x ^ ∣ ℓ i m i ⟩ − ℏ m i ⟨ ℓ f m f ∣ x ^ ∣ ℓ i m i ⟩ = ℏ ( m f − m i ) ⟨ ℓ f m f ∣ x ^ ∣ ℓ i m i ⟩ \begin{aligned}
i \hbar \matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i}
&= \matrixel{\ell_f m_f}{\hat{L}_z \hat{x}}{\ell_i m_i} - \matrixel{\ell_f m_f}{\hat{x} \hat{L}_z}{\ell_i m_i}
\\
&= \hbar m_f \matrixel{\ell_f m_f}{\hat{x}}{\ell_i m_i} - \hbar m_i \matrixel{\ell_f m_f}{\hat{x}}{\ell_i m_i}
\\
&= \hbar (m_f - m_i) \matrixel{\ell_f m_f}{\hat{x}}{\ell_i m_i}
\end{aligned} i ℏ ⟨ ℓ f m f ∣ y ^ ∣ ℓ i m i ⟩ = ⟨ ℓ f m f ∣ L ^ z x ^ ∣ ℓ i m i ⟩ − ⟨ ℓ f m f ∣ x ^ L ^ z ∣ ℓ i m i ⟩ = ℏ m f ⟨ ℓ f m f ∣ x ^ ∣ ℓ i m i ⟩ − ℏ m i ⟨ ℓ f m f ∣ x ^ ∣ ℓ i m i ⟩ = ℏ ( m f − m i ) ⟨ ℓ f m f ∣ x ^ ∣ ℓ i m i ⟩
Next, we do the same thing with the second relation, for [ L ^ z , y ^ ] [\hat{L}_z, \hat{y}] [ L ^ z , y ^ ] , giving:
− i ℏ ⟨ ℓ f m f ∣ x ^ ∣ ℓ i m i ⟩ = ⟨ ℓ f m f ∣ L ^ z y ^ ∣ ℓ i m i ⟩ − ⟨ ℓ f m f ∣ y ^ L ^ z ∣ ℓ i m i ⟩ = ℏ m f ⟨ ℓ f m f ∣ y ^ ∣ ℓ i m i ⟩ − ℏ m i ⟨ ℓ f m f ∣ y ^ ∣ ℓ i m i ⟩ = ℏ ( m f − m i ) ⟨ ℓ f m f ∣ y ^ ∣ ℓ i m i ⟩ \begin{aligned}
- i \hbar \matrixel{\ell_f m_f}{\hat{x}}{\ell_i m_i}
&= \matrixel{\ell_f m_f}{\hat{L}_z \hat{y}}{\ell_i m_i} - \matrixel{\ell_f m_f}{\hat{y} \hat{L}_z}{\ell_i m_i}
\\
&= \hbar m_f \matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i} - \hbar m_i \matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i}
\\
&= \hbar (m_f - m_i) \matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i}
\end{aligned} − i ℏ ⟨ ℓ f m f ∣ x ^ ∣ ℓ i m i ⟩ = ⟨ ℓ f m f ∣ L ^ z y ^ ∣ ℓ i m i ⟩ − ⟨ ℓ f m f ∣ y ^ L ^ z ∣ ℓ i m i ⟩ = ℏ m f ⟨ ℓ f m f ∣ y ^ ∣ ℓ i m i ⟩ − ℏ m i ⟨ ℓ f m f ∣ y ^ ∣ ℓ i m i ⟩ = ℏ ( m f − m i ) ⟨ ℓ f m f ∣ y ^ ∣ ℓ i m i ⟩
Respectively isolating the two above results for x ^ \hat{x} x ^ and y ^ \hat{y} y ^ ,
we arrive at these equations:
⟨ ℓ f m f ∣ x ^ ∣ ℓ i m i ⟩ = i ( m f − m i ) ⟨ ℓ f m f ∣ y ^ ∣ ℓ i m i ⟩ ⟨ ℓ f m f ∣ y ^ ∣ ℓ i m i ⟩ = − i ( m f − m i ) ⟨ ℓ f m f ∣ x ^ ∣ ℓ i m i ⟩ \begin{aligned}
\matrixel{\ell_f m_f}{\hat{x}}{\ell_i m_i}
&= i (m_f - m_i) \matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i}
\\
\matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i}
&= - i (m_f - m_i) \matrixel{\ell_f m_f}{\hat{x}}{\ell_i m_i}
\end{aligned} ⟨ ℓ f m f ∣ x ^ ∣ ℓ i m i ⟩ ⟨ ℓ f m f ∣ y ^ ∣ ℓ i m i ⟩ = i ( m f − m i ) ⟨ ℓ f m f ∣ y ^ ∣ ℓ i m i ⟩ = − i ( m f − m i ) ⟨ ℓ f m f ∣ x ^ ∣ ℓ i m i ⟩
By inserting the first into the second,
we find (part of) the selection rule:
⟨ ℓ f m f ∣ y ^ ∣ ℓ i m i ⟩ = ( m f − m i ) 2 ⟨ ℓ f m f ∣ y ^ ∣ ℓ i m i ⟩ \begin{aligned}
\matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i}
&= (m_f - m_i)^2 \matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i}
\end{aligned} ⟨ ℓ f m f ∣ y ^ ∣ ℓ i m i ⟩ = ( m f − m i ) 2 ⟨ ℓ f m f ∣ y ^ ∣ ℓ i m i ⟩
This can only be true if Δ m = ± 1 \Delta m = \pm 1 Δ m = ± 1 ,
unless the inner products of x ^ \hat{x} x ^ and y ^ \hat{y} y ^ are zero,
in which case we cannot say anything about Δ m \Delta m Δ m yet.
Assuming the latter, we take the inner product of
the commutator [ L ^ z , z ^ ] = 0 \comm{\hat{L}_z}{\hat{z}} = 0 [ L ^ z , z ^ ] = 0 , and find:
0 = ⟨ ℓ f m f ∣ L ^ z z ^ ∣ ℓ i m i ⟩ − ⟨ ℓ f m f ∣ z ^ L ^ z ∣ ℓ i m i ⟩ = ℏ m f ⟨ ℓ f m f ∣ z ^ ∣ ℓ i m i ⟩ − ℏ m i ⟨ ℓ f m f ∣ z ^ ∣ ℓ i m i ⟩ = ℏ ( m f − m i ) ⟨ ℓ f m f ∣ z ^ ∣ ℓ i m i ⟩ \begin{aligned}
0
&= \matrixel{\ell_f m_f}{\hat{L}_z \hat{z}}{\ell_i m_i} - \matrixel{\ell_f m_f}{\hat{z} \hat{L}_z}{\ell_i m_i}
\\
&= \hbar m_f \matrixel{\ell_f m_f}{\hat{z}}{\ell_i m_i} - \hbar m_i \matrixel{\ell_f m_f}{\hat{z}}{\ell_i m_i}
\\
&= \hbar (m_f - m_i) \matrixel{\ell_f m_f}{\hat{z}}{\ell_i m_i}
\end{aligned} 0 = ⟨ ℓ f m f ∣ L ^ z z ^ ∣ ℓ i m i ⟩ − ⟨ ℓ f m f ∣ z ^ L ^ z ∣ ℓ i m i ⟩ = ℏ m f ⟨ ℓ f m f ∣ z ^ ∣ ℓ i m i ⟩ − ℏ m i ⟨ ℓ f m f ∣ z ^ ∣ ℓ i m i ⟩ = ℏ ( m f − m i ) ⟨ ℓ f m f ∣ z ^ ∣ ℓ i m i ⟩
If ⟨ f ∣ z ^ ∣ i ⟩ ≠ 0 \matrixel{f}{\hat{z}}{i} \neq 0 ⟨ f ∣ z ^ ∣ i ⟩ = 0 , we require Δ m = 0 \Delta m = 0 Δ m = 0 .
The previous requirement was Δ m = ± 1 \Delta m = \pm 1 Δ m = ± 1 ,
implying that ⟨ f ∣ x ^ ∣ i ⟩ = ⟨ f ∣ y ^ ∣ i ⟩ = 0 \matrixel{f}{\hat{x}}{i} = \matrixel{f}{\hat{y}}{i} = 0 ⟨ f ∣ x ^ ∣ i ⟩ = ⟨ f ∣ y ^ ∣ i ⟩ = 0
whenever ⟨ f ∣ z ^ ∣ i ⟩ ≠ 0 \matrixel{f}{\hat{z}}{i} \neq 0 ⟨ f ∣ z ^ ∣ i ⟩ = 0 .
Only if ⟨ f ∣ z ^ ∣ i ⟩ = 0 \matrixel{f}{\hat{z}}{i} = 0 ⟨ f ∣ z ^ ∣ i ⟩ = 0
does the previous rule Δ m = ± 1 \Delta m = \pm 1 Δ m = ± 1 hold,
in which case the inner products of x ^ \hat{x} x ^ and y ^ \hat{y} y ^ are nonzero.
Meanwhile, for the total angular momentum ℓ \ell ℓ we have the following:
Δ ℓ = ± 1 \begin{aligned}
\boxed{
\Delta \ell = \pm 1
}
\end{aligned} Δ ℓ = ± 1
Proof
Proof.
We start from the following relation
(which is already quite a chore to prove):
[ L ^ 2 , [ L ^ 2 , r ^ ] ] = 2 ℏ 2 ( r ^ L ^ 2 + L ^ 2 r ^ ) \begin{aligned}
\Comm{\hat{L}^2}{\comm{\hat{L}^2}{\vu{r}}}
= 2 \hbar^2 (\vu{r} \hat{L}^2 + \hat{L}^2 \vu{r})
\end{aligned} [ L ^ 2 , [ L ^ 2 , r ^ ] ] = 2 ℏ 2 ( r ^ L ^ 2 + L ^ 2 r ^ )
Proof
Proof.
To begin with, we want to find the commutator of L ^ 2 \hat{L}^2 L ^ 2 and x ^ \hat{x} x ^ :
[ L ^ 2 , x ^ ] = [ L ^ x 2 , x ^ ] + [ L ^ y 2 , x ^ ] + [ L ^ z 2 , x ^ ] = [ L ^ y 2 , x ^ ] + [ L ^ z 2 , x ^ ] = L ^ y [ L ^ y , x ^ ] + [ L ^ y , x ^ ] L ^ y + L ^ z [ L ^ z , x ^ ] + [ L ^ z , x ^ ] L ^ z \begin{aligned}
\comm{\hat{L}^2}{\hat{x}}
&= \comm{\hat{L}_x^2}{\hat{x}} + \comm{\hat{L}_y^2}{\hat{x}} + \comm{\hat{L}_z^2}{\hat{x}}
= \comm{\hat{L}_y^2}{\hat{x}} + \comm{\hat{L}_z^2}{\hat{x}}
\\
&= \hat{L}_y \comm{\hat{L}_y}{\hat{x}} + \comm{\hat{L}_y}{\hat{x}} \hat{L}_y
+ \hat{L}_z \comm{\hat{L}_z}{\hat{x}} + \comm{\hat{L}_z}{\hat{x}} \hat{L}_z
\end{aligned} [ L ^ 2 , x ^ ] = [ L ^ x 2 , x ^ ] + [ L ^ y 2 , x ^ ] + [ L ^ z 2 , x ^ ] = [ L ^ y 2 , x ^ ] + [ L ^ z 2 , x ^ ] = L ^ y [ L ^ y , x ^ ] + [ L ^ y , x ^ ] L ^ y + L ^ z [ L ^ z , x ^ ] + [ L ^ z , x ^ ] L ^ z
Evaluating these commutators gives us:
[ L ^ y , x ^ ] = [ z ^ p ^ x , x ^ ] − [ x ^ p ^ z , x ^ ] = z ^ [ p ^ x , x ^ ] + [ z ^ , x ^ ] p ^ x − x ^ [ p ^ z , x ^ ] − [ x ^ , x ^ ] p ^ z = − i ℏ z ^ [ L ^ z , x ^ ] = [ x ^ p ^ y , x ^ ] − [ y ^ p ^ x , x ^ ] = x ^ [ p ^ y , x ^ ] + [ x ^ , x ^ ] p ^ y − y ^ [ p ^ x , x ^ ] − [ y ^ , x ^ ] p ^ x = i ℏ y ^ \begin{aligned}
\comm{\hat{L}_y}{\hat{x}}
&= \comm{\hat{z} \hat{p}_x}{\hat{x}} - \comm{\hat{x} \hat{p}_z}{\hat{x}}
= \hat{z} \comm{\hat{p}_x}{\hat{x}} + \comm{\hat{z}}{\hat{x}} \hat{p}_x
- \hat{x} \comm{\hat{p}_z}{\hat{x}} - \comm{\hat{x}}{\hat{x}} \hat{p}_z
= - i \hbar \hat{z}
\\
\comm{\hat{L}_z}{\hat{x}}
&= \comm{\hat{x} \hat{p}_y}{\hat{x}} - \comm{\hat{y} \hat{p}_x}{\hat{x}}
= \hat{x} \comm{\hat{p}_y}{\hat{x}} + \comm{\hat{x}}{\hat{x}} \hat{p}_y
- \hat{y} \comm{\hat{p}_x}{\hat{x}} - \comm{\hat{y}}{\hat{x}} \hat{p}_x
= i \hbar \hat{y}
\end{aligned} [ L ^ y , x ^ ] [ L ^ z , x ^ ] = [ z ^ p ^ x , x ^ ] − [ x ^ p ^ z , x ^ ] = z ^ [ p ^ x , x ^ ] + [ z ^ , x ^ ] p ^ x − x ^ [ p ^ z , x ^ ] − [ x ^ , x ^ ] p ^ z = − i ℏ z ^ = [ x ^ p ^ y , x ^ ] − [ y ^ p ^ x , x ^ ] = x ^ [ p ^ y , x ^ ] + [ x ^ , x ^ ] p ^ y − y ^ [ p ^ x , x ^ ] − [ y ^ , x ^ ] p ^ x = i ℏ y ^
Which we then insert back into the original equation, yielding:
[ L ^ 2 , x ^ ] = i ℏ ( − L ^ y z ^ − z ^ L ^ y + L ^ z y ^ + y ^ L ^ z ) \begin{aligned}
\comm{\hat{L}^2}{\hat{x}}
&= i \hbar (- \hat{L}_y \hat{z} - \hat{z} \hat{L}_y + \hat{L}_z \hat{y} + \hat{y} \hat{L}_z)
\end{aligned} [ L ^ 2 , x ^ ] = i ℏ ( − L ^ y z ^ − z ^ L ^ y + L ^ z y ^ + y ^ L ^ z )
This can be simplified by introducing some more commutators:
[ L ^ 2 , x ^ ] = i ℏ ( − ( [ L ^ y , z ^ ] + z ^ L ^ y ) − z ^ L ^ y + ( [ L ^ z , y ^ ] + y ^ L ^ z ) + y ^ L ^ z ) \begin{aligned}
\comm{\hat{L}^2}{\hat{x}}
&= i \hbar \big( \!-\! ( \comm{\hat{L}_y}{\hat{z}} + \hat{z} \hat{L}_y ) - \hat{z} \hat{L}_y
+ ( \comm{\hat{L}_z}{\hat{y}} + \hat{y} \hat{L}_z ) + \hat{y} \hat{L}_z \big)
\end{aligned} [ L ^ 2 , x ^ ] = i ℏ ( − ( [ L ^ y , z ^ ] + z ^ L ^ y ) − z ^ L ^ y + ( [ L ^ z , y ^ ] + y ^ L ^ z ) + y ^ L ^ z )
Evaluating these commutators gives us:
[ L ^ y , z ^ ] = [ z ^ p ^ x , z ^ ] − [ x ^ p ^ z , z ^ ] = z ^ [ p ^ x , z ^ ] + [ z ^ , z ^ ] p ^ x − x ^ [ p ^ z , z ^ ] − [ x ^ , z ^ ] p ^ z = i ℏ x ^ [ L ^ z , y ^ ] = [ x ^ p ^ y , y ^ ] − [ y ^ p ^ x , y ^ ] = x ^ [ p ^ y , y ^ ] + [ x ^ , y ^ ] p ^ y − y ^ [ p ^ x , y ^ ] − [ y ^ , y ^ ] p ^ x = − i ℏ x ^ \begin{aligned}
\comm{\hat{L}_y}{\hat{z}}
&= \comm{\hat{z} \hat{p}_x}{\hat{z}} - \comm{\hat{x} \hat{p}_z}{\hat{z}}
= \hat{z} \comm{\hat{p}_x}{\hat{z}} + \comm{\hat{z}}{\hat{z}} \hat{p}_x
- \hat{x} \comm{\hat{p}_z}{\hat{z}} - \comm{\hat{x}}{\hat{z}} \hat{p}_z
= i \hbar \hat{x}
\\
\comm{\hat{L}_z}{\hat{y}}
&= \comm{\hat{x} \hat{p}_y}{\hat{y}} - \comm{\hat{y} \hat{p}_x}{\hat{y}}
= \hat{x} \comm{\hat{p}_y}{\hat{y}} + \comm{\hat{x}}{\hat{y}} \hat{p}_y
- \hat{y} \comm{\hat{p}_x}{\hat{y}} - \comm{\hat{y}}{\hat{y}} \hat{p}_x
= - i \hbar \hat{x}
\end{aligned} [ L ^ y , z ^ ] [ L ^ z , y ^ ] = [ z ^ p ^ x , z ^ ] − [ x ^ p ^ z , z ^ ] = z ^ [ p ^ x , z ^ ] + [ z ^ , z ^ ] p ^ x − x ^ [ p ^ z , z ^ ] − [ x ^ , z ^ ] p ^ z = i ℏ x ^ = [ x ^ p ^ y , y ^ ] − [ y ^ p ^ x , y ^ ] = x ^ [ p ^ y , y ^ ] + [ x ^ , y ^ ] p ^ y − y ^ [ p ^ x , y ^ ] − [ y ^ , y ^ ] p ^ x = − i ℏ x ^
Substituting these then leads us to the first milestone of this proof:
[ L ^ 2 , x ^ ] = i ℏ ( − i ℏ x ^ − z ^ L ^ y − z ^ L ^ y − i ℏ x ^ + y ^ L ^ z + y ^ L ^ z ) = 2 i ℏ ( y ^ L ^ z − z ^ L ^ y − i ℏ x ^ ) \begin{aligned}
\comm{\hat{L}^2}{\hat{x}}
&= i \hbar \big( \!-\! i \hbar \hat{x} - \hat{z} \hat{L}_y - \hat{z} \hat{L}_y
- i \hbar \hat{x} + \hat{y} \hat{L}_z + \hat{y} \hat{L}_z \big)
\\
&= 2 i \hbar (\hat{y} \hat{L}_z - \hat{z} \hat{L}_y - i \hbar \hat{x})
\end{aligned} [ L ^ 2 , x ^ ] = i ℏ ( − i ℏ x ^ − z ^ L ^ y − z ^ L ^ y − i ℏ x ^ + y ^ L ^ z + y ^ L ^ z ) = 2 i ℏ ( y ^ L ^ z − z ^ L ^ y − i ℏ x ^ )
Repeating this process for [ L ^ 2 , y ^ ] \comm{\hat{L}^2}{\hat{y}} [ L ^ 2 , y ^ ] and [ L ^ 2 , z ^ ] \comm{\hat{L}^2}{\hat{z}} [ L ^ 2 , z ^ ] ,
we find analogous expressions:
[ L ^ 2 , y ^ ] = 2 i ℏ ( z ^ L ^ x − x ^ L ^ z − i ℏ y ^ ) [ L ^ 2 , z ^ ] = 2 i ℏ ( x ^ L ^ y − y ^ L ^ x − i ℏ z ^ ) \begin{aligned}
\comm{\hat{L}^2}{\hat{y}}
&= 2 i \hbar (\hat{z} \hat{L}_x - \hat{x} \hat{L}_z - i \hbar \hat{y})
\\
\comm{\hat{L}^2}{\hat{z}}
&= 2 i \hbar (\hat{x} \hat{L}_y - \hat{y} \hat{L}_x - i \hbar \hat{z})
\end{aligned} [ L ^ 2 , y ^ ] [ L ^ 2 , z ^ ] = 2 i ℏ ( z ^ L ^ x − x ^ L ^ z − i ℏ y ^ ) = 2 i ℏ ( x ^ L ^ y − y ^ L ^ x − i ℏ z ^ )
Next, we take the commutator with L ^ 2 \hat{L}^2 L ^ 2 of the commutator we just found:
[ L ^ 2 , [ L ^ 2 , x ^ ] ] = 2 i ℏ ( [ L ^ 2 , y ^ L ^ z ] − [ L ^ 2 , z ^ L ^ y ] − i ℏ [ L ^ 2 , x ^ ] ) = 2 i ℏ ( y ^ [ L ^ 2 , L ^ z ] + [ L ^ 2 , y ^ ] L ^ z − z ^ [ L ^ 2 , L ^ y ] − [ L ^ 2 , z ^ ] L ^ y − i ℏ [ L ^ 2 , x ^ ] ) \begin{aligned}
\comm{\hat{L}^2}{\comm{\hat{L}^2}{\hat{x}}}
&= 2 i \hbar \big(\comm{\hat{L}^2}{\hat{y} \hat{L}_z} - \comm{\hat{L}^2}{\hat{z} \hat{L}_y} - i \hbar \comm{\hat{L}^2}{\hat{x}}\big)
\\
&= 2 i \hbar \big( \hat{y} \comm{\hat{L}^2}{\hat{L}_z} + \comm{\hat{L}^2}{\hat{y}} \hat{L}_z
- \hat{z} \comm{\hat{L}^2}{\hat{L}_y} - \comm{\hat{L}^2}{\hat{z}} \hat{L}_y
- i \hbar \comm{\hat{L}^2}{\hat{x}} \big)
\end{aligned} [ L ^ 2 , [ L ^ 2 , x ^ ] ] = 2 i ℏ ( [ L ^ 2 , y ^ L ^ z ] − [ L ^ 2 , z ^ L ^ y ] − i ℏ [ L ^ 2 , x ^ ] ) = 2 i ℏ ( y ^ [ L ^ 2 , L ^ z ] + [ L ^ 2 , y ^ ] L ^ z − z ^ [ L ^ 2 , L ^ y ] − [ L ^ 2 , z ^ ] L ^ y − i ℏ [ L ^ 2 , x ^ ] )
Where we used that [ L ^ 2 , L ^ y ] = [ L ^ 2 , L ^ z ] = 0 \comm{\hat{L}^2}{\hat{L}_y} = \comm{\hat{L}^2}{\hat{L}_z} = 0 [ L ^ 2 , L ^ y ] = [ L ^ 2 , L ^ z ] = 0 .
The other commutators look familiar:
[ L ^ 2 , [ L ^ 2 , x ^ ] ] = 2 i ℏ ( [ L ^ 2 , y ^ ] L ^ z − [ L ^ 2 , z ^ ] L ^ y − i ℏ [ L ^ 2 , x ^ ] ) \begin{aligned}
\comm{\hat{L}^2}{\comm{\hat{L}^2}{\hat{x}}}
&= 2 i \hbar \big( \comm{\hat{L}^2}{\hat{y}} \hat{L}_z
- \comm{\hat{L}^2}{\hat{z}} \hat{L}_y
- i \hbar \comm{\hat{L}^2}{\hat{x}} \big)
\end{aligned} [ L ^ 2 , [ L ^ 2 , x ^ ] ] = 2 i ℏ ( [ L ^ 2 , y ^ ] L ^ z − [ L ^ 2 , z ^ ] L ^ y − i ℏ [ L ^ 2 , x ^ ] )
By inserting the expressions we found earlier for these commutators, we get:
[ L ^ 2 , [ L ^ 2 , x ^ ] ] = − 4 ℏ 2 ( z ^ L ^ x L ^ z − x ^ L ^ z 2 − i ℏ y ^ L ^ z + y ^ L ^ x L ^ y − x ^ L ^ y 2 + i ℏ z ^ L ^ y ) + 2 ℏ 2 ( L ^ 2 x ^ − x ^ L ^ 2 ) \begin{aligned}
\comm{\hat{L}^2}{\comm{\hat{L}^2}{\hat{x}}}
&= - 4 \hbar^2 \big( \hat{z} \hat{L}_x \hat{L}_z - \hat{x} \hat{L}_z^2 - i \hbar \hat{y} \hat{L}_z
+ \hat{y} \hat{L}_x \hat{L}_y - \hat{x} \hat{L}_y^2 + i \hbar \hat{z} \hat{L}_y \big) \\
&\qquad\qquad + 2 \hbar^2 \big( \hat{L}^2 \hat{x} - \hat{x} \hat{L}^2 \big)
\end{aligned} [ L ^ 2 , [ L ^ 2 , x ^ ] ] = − 4 ℏ 2 ( z ^ L ^ x L ^ z − x ^ L ^ z 2 − i ℏ y ^ L ^ z + y ^ L ^ x L ^ y − x ^ L ^ y 2 + i ℏ z ^ L ^ y ) + 2 ℏ 2 ( L ^ 2 x ^ − x ^ L ^ 2 )
Substituting the well-known commutators
i ℏ L ^ y = [ L ^ z , L ^ x ] i \hbar \hat{L}_y = \comm{\hat{L}_z}{\hat{L}_x} i ℏ L ^ y = [ L ^ z , L ^ x ] and
i ℏ L ^ z = [ L ^ x , L ^ y ] i \hbar \hat{L}_z = \comm{\hat{L}_x}{\hat{L}_y} i ℏ L ^ z = [ L ^ x , L ^ y ] :
[ L ^ 2 , [ L ^ 2 , x ^ ] ] = − 4 ℏ 2 ( z ^ L ^ x L ^ z + y ^ L ^ x L ^ y − x ^ L ^ y 2 − x ^ L ^ z 2 + z ^ [ L ^ z , L ^ x ] − y ^ [ L ^ x , L ^ y ] ) + 2 ℏ 2 ( L ^ 2 x ^ − x ^ L ^ 2 ) = − 4 ℏ 2 ( z ^ L ^ z L ^ x + y ^ L ^ y L ^ x − x ^ L ^ y 2 − x ^ L ^ z 2 ) + 2 ℏ 2 ( L ^ 2 x ^ − x ^ L ^ 2 ) \begin{aligned}
\comm{\hat{L}^2}{\comm{\hat{L}^2}{\hat{x}}}
&= - 4 \hbar^2 \big( \hat{z} \hat{L}_x \hat{L}_z + \hat{y} \hat{L}_x \hat{L}_y
- \hat{x} \hat{L}_y^2 - \hat{x} \hat{L}_z^2
+ \hat{z} \comm{\hat{L}_z}{\hat{L}_x} - \hat{y} \comm{\hat{L}_x}{\hat{L}_y} \big) \\
&\qquad\qquad + 2 \hbar^2 \big( \hat{L}^2 \hat{x} - \hat{x} \hat{L}^2 \big)
\\
&= - 4 \hbar^2 \big( \hat{z} \hat{L}_z \hat{L}_x + \hat{y} \hat{L}_y \hat{L}_x
- \hat{x} \hat{L}_y^2 - \hat{x} \hat{L}_z^2 \big)
+ 2 \hbar^2 \big( \hat{L}^2 \hat{x} - \hat{x} \hat{L}^2 \big)
\end{aligned} [ L ^ 2 , [ L ^ 2 , x ^ ] ] = − 4 ℏ 2 ( z ^ L ^ x L ^ z + y ^ L ^ x L ^ y − x ^ L ^ y 2 − x ^ L ^ z 2 + z ^ [ L ^ z , L ^ x ] − y ^ [ L ^ x , L ^ y ] ) + 2 ℏ 2 ( L ^ 2 x ^ − x ^ L ^ 2 ) = − 4 ℏ 2 ( z ^ L ^ z L ^ x + y ^ L ^ y L ^ x − x ^ L ^ y 2 − x ^ L ^ z 2 ) + 2 ℏ 2 ( L ^ 2 x ^ − x ^ L ^ 2 )
By definition, L ^ x 2 + L ^ y 2 + L ^ z 2 = L ^ 2 \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2 = \hat{L}^2 L ^ x 2 + L ^ y 2 + L ^ z 2 = L ^ 2 ,
which we use to arrive at:
[ L ^ 2 , [ L ^ 2 , x ^ ] ] = − 4 ℏ 2 ( z ^ L ^ z L ^ x + y ^ L ^ y L ^ x + x ^ L ^ x 2 − x ^ L ^ 2 ) + 2 ℏ 2 ( L ^ 2 x ^ − x ^ L ^ 2 ) = − 4 ℏ 2 ( z ^ L ^ z L ^ x + y ^ L ^ y L ^ x + x ^ L ^ x 2 ) + 2 ℏ 2 ( L ^ 2 x ^ + x ^ L ^ 2 ) \begin{aligned}
\comm{\hat{L}^2}{\comm{\hat{L}^2}{\hat{x}}}
&= - 4 \hbar^2 \big( \hat{z} \hat{L}_z \hat{L}_x + \hat{y} \hat{L}_y \hat{L}_x + \hat{x} \hat{L}_x^2 - \hat{x} \hat{L}^2 \big)
+ 2 \hbar^2 \big( \hat{L}^2 \hat{x} - \hat{x} \hat{L}^2 \big)
\\
&= - 4 \hbar^2 \big( \hat{z} \hat{L}_z \hat{L}_x + \hat{y} \hat{L}_y \hat{L}_x + \hat{x} \hat{L}_x^2 \big)
+ 2 \hbar^2 \big( \hat{L}^2 \hat{x} + \hat{x} \hat{L}^2 \big)
\end{aligned} [ L ^ 2 , [ L ^ 2 , x ^ ] ] = − 4 ℏ 2 ( z ^ L ^ z L ^ x + y ^ L ^ y L ^ x + x ^ L ^ x 2 − x ^ L ^ 2 ) + 2 ℏ 2 ( L ^ 2 x ^ − x ^ L ^ 2 ) = − 4 ℏ 2 ( z ^ L ^ z L ^ x + y ^ L ^ y L ^ x + x ^ L ^ x 2 ) + 2 ℏ 2 ( L ^ 2 x ^ + x ^ L ^ 2 )
The second term is what we want to prove,
so the first term must vanish:
z ^ L ^ z L ^ x + y ^ L ^ y L ^ x + x ^ L ^ x 2 = ( r ^ ⋅ L ^ ) L ^ x = ( r ^ ⋅ ( r ^ × p ^ ) ) L ^ x = ( p ^ ⋅ ( r ^ × r ^ ) ) L ^ x = 0 \begin{aligned}
\hat{z} \hat{L}_z \hat{L}_x + \hat{y} \hat{L}_y \hat{L}_x + \hat{x} \hat{L}_x^2
= (\vu{r} \cdot \vu{L}) \hat{L}_x
= (\vu{r} \cdot (\vu{r} \cross \vu{p})) \hat{L}_x
= (\vu{p} \cdot (\vu{r} \cross \vu{r})) \hat{L}_x
= 0
\end{aligned} z ^ L ^ z L ^ x + y ^ L ^ y L ^ x + x ^ L ^ x 2 = ( r ^ ⋅ L ^ ) L ^ x = ( r ^ ⋅ ( r ^ × p ^ )) L ^ x = ( p ^ ⋅ ( r ^ × r ^ )) L ^ x = 0
Where L ^ = r ^ × p ^ \vu{L} = \vu{r} \cross \vu{p} L ^ = r ^ × p ^ by definition,
and the cross product of a vector with itself is zero.
This process can be repeated for
[ L ^ 2 , [ L ^ 2 , y ^ ] ] \comm{\hat{L}^2}{\comm{\hat{L}^2}{\hat{y}}} [ L ^ 2 , [ L ^ 2 , y ^ ] ] and
[ L ^ 2 , [ L ^ 2 , z ^ ] ] \comm{\hat{L}^2}{\comm{\hat{L}^2}{\hat{z}}} [ L ^ 2 , [ L ^ 2 , z ^ ] ] ,
leading us to:
[ L ^ 2 , [ L ^ 2 , x ^ ] ] = 2 ℏ 2 ( x ^ L ^ 2 + L ^ 2 x ^ ) [ L ^ 2 , [ L ^ 2 , y ^ ] ] = 2 ℏ 2 ( y ^ L ^ 2 + L ^ 2 y ^ ) [ L ^ 2 , [ L ^ 2 , z ^ ] ] = 2 ℏ 2 ( z ^ L ^ 2 + L ^ 2 z ^ ) \begin{aligned}
\comm{\hat{L}^2}{\comm{\hat{L}^2}{\hat{x}}}
&= 2 \hbar^2 (\hat{x} \hat{L}^2 + \hat{L}^2 \hat{x})
\\
\comm{\hat{L}^2}{\comm{\hat{L}^2}{\hat{y}}}
&= 2 \hbar^2 (\hat{y} \hat{L}^2 + \hat{L}^2 \hat{y})
\\
\comm{\hat{L}^2}{\comm{\hat{L}^2}{\hat{z}}}
&= 2 \hbar^2 (\hat{z} \hat{L}^2 + \hat{L}^2 \hat{z})
\end{aligned} [ L ^ 2 , [ L ^ 2 , x ^ ] ] [ L ^ 2 , [ L ^ 2 , y ^ ] ] [ L ^ 2 , [ L ^ 2 , z ^ ] ] = 2 ℏ 2 ( x ^ L ^ 2 + L ^ 2 x ^ ) = 2 ℏ 2 ( y ^ L ^ 2 + L ^ 2 y ^ ) = 2 ℏ 2 ( z ^ L ^ 2 + L ^ 2 z ^ )
At last, this brings us to the desired equation for [ L ^ 2 , [ L ^ 2 , r ^ ] ] \comm{\hat{L}^2}{\comm{\hat{L}^2}{\vu{r}}} [ L ^ 2 , [ L ^ 2 , r ^ ] ] ,
with r ^ = ( x ^ , y ^ , z ^ ) \vu{r} = (\hat{x}, \hat{y}, \hat{z}) r ^ = ( x ^ , y ^ , z ^ ) .
We then multiply this relation by ⟨ f ∣ = ⟨ ℓ f m f ∣ \Bra{f} = \Bra{\ell_f m_f} ⟨ f ∣ = ⟨ ℓ f m f ∣ on the left
and ∣ i ⟩ = ∣ ℓ i m i ⟩ \Ket{i} = \Ket{\ell_i m_i} ∣ i ⟩ = ∣ ℓ i m i ⟩ on the right,
so the right-hand side becomes:
2 ℏ 2 ⟨ f ∣ r ^ L ^ 2 + L ^ 2 r ^ ∣ i ⟩ = 2 ℏ 2 ( ⟨ f ∣ r ^ L ^ 2 ∣ i ⟩ + ⟨ f ∣ L ^ 2 r ^ ∣ i ⟩ ) = 2 ℏ 2 ( ℏ 2 ℓ i ( ℓ i + 1 ) ⟨ f ∣ r ^ ∣ i ⟩ + ℏ 2 ℓ f ( ℓ f + 1 ) ⟨ f ∣ r ^ ∣ i ⟩ ) = 2 ℏ 4 ( ℓ f ( ℓ f + 1 ) + ℓ i ( ℓ i + 1 ) ) ⟨ f ∣ r ^ ∣ i ⟩ \begin{aligned}
2 \hbar^2 \matrixel{f}{\vu{r} \hat{L}^2 \!\!+\! \hat{L}^2 \!\vu{r}}{i}
&= 2 \hbar^2 \big( \matrixel{f}{\vu{r} \hat{L}^2}{i} + \matrixel{f}{\hat{L}^2 \vu{r}}{i} \big)
\\
&= 2 \hbar^2 \big( \hbar^2 \ell_i (\ell_i \!+\! 1) \matrixel{f}{\vu{r}}{i}
+ \hbar^2 \ell_f (\ell_f \!+\! 1) \matrixel{f}{\vu{r}}{i} \big)
\\
&= 2 \hbar^4 \big(\ell_f (\ell_f \!+\! 1) + \ell_i (\ell_i \!+\! 1)\big) \matrixel{f}{\vu{r}}{i}
\end{aligned} 2 ℏ 2 ⟨ f ∣ r ^ L ^ 2 + L ^ 2 r ^ ∣ i ⟩ = 2 ℏ 2 ( ⟨ f ∣ r ^ L ^ 2 ∣ i ⟩ + ⟨ f ∣ L ^ 2 r ^ ∣ i ⟩ ) = 2 ℏ 2 ( ℏ 2 ℓ i ( ℓ i + 1 ) ⟨ f ∣ r ^ ∣ i ⟩ + ℏ 2 ℓ f ( ℓ f + 1 ) ⟨ f ∣ r ^ ∣ i ⟩ ) = 2 ℏ 4 ( ℓ f ( ℓ f + 1 ) + ℓ i ( ℓ i + 1 ) ) ⟨ f ∣ r ^ ∣ i ⟩
And, likewise, the left-hand side becomes:
⟨ f ∣ [ L ^ 2 , [ L ^ 2 , r ^ ] ] ∣ i ⟩ = ⟨ f ∣ L ^ 2 [ L ^ 2 , r ^ ] ∣ i ⟩ − ⟨ f ∣ [ L ^ 2 , r ^ ] L ^ 2 ∣ i ⟩ = ℏ 2 ℓ f ( ℓ f + 1 ) ⟨ f ∣ [ L ^ 2 , r ^ ] ∣ i ⟩ − ℏ 2 ℓ i ( ℓ i + 1 ) ⟨ f ∣ [ L ^ 2 , r ^ ] ∣ i ⟩ = ℏ 2 ( ℓ f ( ℓ f + 1 ) − ℓ i ( ℓ i + 1 ) ) ⟨ f ∣ [ L ^ 2 , r ^ ] ∣ i ⟩ = ℏ 2 ( ℓ f ( ℓ f + 1 ) − ℓ i ( ℓ i + 1 ) ) ( ⟨ f ∣ L ^ 2 r ^ ∣ i ⟩ − ⟨ f ∣ r ^ L ^ 2 ∣ i ⟩ ) = ℏ 4 ( ℓ f ( ℓ f + 1 ) − ℓ i ( ℓ i + 1 ) ) 2 ⟨ f ∣ r ^ ∣ i ⟩ \begin{aligned}
\matrixel{f}{\comm{\hat{L}^2}{\comm{\hat{L}^2}{\vu{r}}}}{i}
&= \matrixel{f}{\hat{L}^2 \comm{\hat{L}^2}{\vu{r}}}{i}
- \matrixel{f}{\comm{\hat{L}^2}{\vu{r}} \hat{L}^2}{i}
\\
&= \hbar^2 \ell_f (\ell_f \!+\! 1) \matrixel{f}{\comm{\hat{L}^2}{\vu{r}}}{i}
- \hbar^2 \ell_i (\ell_i \!+\! 1) \matrixel{f}{\comm{\hat{L}^2}{\vu{r}}}{i}
\\
&= \hbar^2 \big( \ell_f (\ell_f \!+\! 1) - \ell_i (\ell_i \!+\! 1) \big) \matrixel{f}{\comm{\hat{L}^2}{\vu{r}}}{i}
\\
&= \hbar^2 \big( \ell_f (\ell_f \!+\! 1) - \ell_i (\ell_i \!+\! 1) \big)
\big( \matrixel{f}{\hat{L}^2 \vu{r}}{i} - \matrixel{f}{\vu{r} \hat{L}^2}{i} \big)
\\
&= \hbar^4 \big( \ell_f (\ell_f \!+\! 1) - \ell_i (\ell_i \!+\! 1) \big)^2 \matrixel{f}{\vu{r}}{i}
\end{aligned} ⟨ f ∣ [ L ^ 2 , [ L ^ 2 , r ^ ] ] ∣ i ⟩ = ⟨ f ∣ L ^ 2 [ L ^ 2 , r ^ ] ∣ i ⟩ − ⟨ f ∣ [ L ^ 2 , r ^ ] L ^ 2 ∣ i ⟩ = ℏ 2 ℓ f ( ℓ f + 1 ) ⟨ f ∣ [ L ^ 2 , r ^ ] ∣ i ⟩ − ℏ 2 ℓ i ( ℓ i + 1 ) ⟨ f ∣ [ L ^ 2 , r ^ ] ∣ i ⟩ = ℏ 2 ( ℓ f ( ℓ f + 1 ) − ℓ i ( ℓ i + 1 ) ) ⟨ f ∣ [ L ^ 2 , r ^ ] ∣ i ⟩ = ℏ 2 ( ℓ f ( ℓ f + 1 ) − ℓ i ( ℓ i + 1 ) ) ( ⟨ f ∣ L ^ 2 r ^ ∣ i ⟩ − ⟨ f ∣ r ^ L ^ 2 ∣ i ⟩ ) = ℏ 4 ( ℓ f ( ℓ f + 1 ) − ℓ i ( ℓ i + 1 ) ) 2 ⟨ f ∣ r ^ ∣ i ⟩
Obviously, both sides are equal to each other,
leading to the following equation:
2 ℓ f ( ℓ f + 1 ) + 2 ℓ i ( ℓ i + 1 ) = ( ℓ f ( ℓ f + 1 ) − ℓ i ( ℓ i + 1 ) ) 2 \begin{aligned}
2 \ell_f (\ell_f \!+\! 1) + 2 \ell_i (\ell_i \!+\! 1)
&= \big( \ell_f (\ell_f \!+\! 1) - \ell_i (\ell_i \!+\! 1) \big)^2
\end{aligned} 2 ℓ f ( ℓ f + 1 ) + 2 ℓ i ( ℓ i + 1 ) = ( ℓ f ( ℓ f + 1 ) − ℓ i ( ℓ i + 1 ) ) 2
To proceed, we rewrite the right-hand side like so:
( ℓ f ( ℓ f + 1 ) − ℓ i ( ℓ i + 1 ) ) 2 = ( ℓ f 2 − ℓ i 2 + ℓ f − ℓ i ) 2 = ( ( ℓ f + ℓ i ) ( ℓ f − ℓ i ) + ( ℓ f − ℓ i ) ) 2 = ( ℓ f + ℓ i ) 2 ( ℓ f − ℓ i ) 2 + 2 ( ℓ f + ℓ i ) ( ℓ f − ℓ i ) 2 + ( ℓ f − ℓ i ) 2 = ( ( ℓ f + ℓ i ) 2 + 2 ( ℓ f + ℓ i ) + 1 ) ( ℓ f − ℓ i ) 2 = ( ℓ f + ℓ i + 1 ) 2 ( ℓ f − ℓ i ) 2 \begin{aligned}
\big( \ell_f (\ell_f \!+\! 1) - \ell_i (\ell_i \!+\! 1) \big)^2
&= \big( \ell_f^2 - \ell_i^2 + \ell_f - \ell_i \big)^2
\\
&= \big( (\ell_f + \ell_i) (\ell_f - \ell_i) + (\ell_f - \ell_i) \big)^2
\\
&= (\ell_f + \ell_i)^2 (\ell_f - \ell_i)^2 + 2 (\ell_f + \ell_i) (\ell_f - \ell_i)^2 + (\ell_f - \ell_i)^2
\\
&= \big( (\ell_f + \ell_i)^2 + 2 (\ell_f + \ell_i) + 1 \big) (\ell_f - \ell_i)^2
\\
&= (\ell_f + \ell_i + 1)^2 (\ell_f - \ell_i)^2
\end{aligned} ( ℓ f ( ℓ f + 1 ) − ℓ i ( ℓ i + 1 ) ) 2 = ( ℓ f 2 − ℓ i 2 + ℓ f − ℓ i ) 2 = ( ( ℓ f + ℓ i ) ( ℓ f − ℓ i ) + ( ℓ f − ℓ i ) ) 2 = ( ℓ f + ℓ i ) 2 ( ℓ f − ℓ i ) 2 + 2 ( ℓ f + ℓ i ) ( ℓ f − ℓ i ) 2 + ( ℓ f − ℓ i ) 2 = ( ( ℓ f + ℓ i ) 2 + 2 ( ℓ f + ℓ i ) + 1 ) ( ℓ f − ℓ i ) 2 = ( ℓ f + ℓ i + 1 ) 2 ( ℓ f − ℓ i ) 2
And then we do the same to the left-hand side, yielding:
2 ( ℓ f 2 + ℓ i 2 + ℓ f + ℓ i ) = 2 ℓ f 2 + 2 ℓ i 2 + 2 ℓ f ℓ i − 2 ℓ f ℓ i + 2 ℓ f + 2 ℓ i + 1 − 1 = ( ℓ f + ℓ i + 1 ) 2 + ℓ f 2 + ℓ i 2 − 2 ℓ f ℓ i − 1 = ( ℓ f + ℓ i + 1 ) 2 + ( ℓ f − ℓ i ) 2 − 1 \begin{aligned}
2 (\ell_f^2 + \ell_i^2 + \ell_f + \ell_i)
&= 2 \ell_f^2 + 2 \ell_i^2 + 2 \ell_f \ell_i - 2 \ell_f \ell_i + 2 \ell_f + 2 \ell_i + 1 - 1
\\
&= (\ell_f + \ell_i + 1)^2 + \ell_f^2 + \ell_i^2 - 2 \ell_f \ell_i - 1
\\
&= (\ell_f + \ell_i + 1)^2 + (\ell_f - \ell_i)^2 - 1
\end{aligned} 2 ( ℓ f 2 + ℓ i 2 + ℓ f + ℓ i ) = 2 ℓ f 2 + 2 ℓ i 2 + 2 ℓ f ℓ i − 2 ℓ f ℓ i + 2 ℓ f + 2 ℓ i + 1 − 1 = ( ℓ f + ℓ i + 1 ) 2 + ℓ f 2 + ℓ i 2 − 2 ℓ f ℓ i − 1 = ( ℓ f + ℓ i + 1 ) 2 + ( ℓ f − ℓ i ) 2 − 1
The equation above has thus been simplified to the following form:
( ℓ f + ℓ i + 1 ) 2 + ( ℓ f − ℓ i ) 2 − 1 = ( ℓ f + ℓ i + 1 ) 2 ( ℓ f − ℓ i ) 2 \begin{aligned}
(\ell_f + \ell_i + 1)^2 + (\ell_f - \ell_i)^2 - 1
&= (\ell_f + \ell_i + 1)^2 (\ell_f - \ell_i)^2
\end{aligned} ( ℓ f + ℓ i + 1 ) 2 + ( ℓ f − ℓ i ) 2 − 1 = ( ℓ f + ℓ i + 1 ) 2 ( ℓ f − ℓ i ) 2
Rearranging yields a product equal to zero,
so one or both of the factors must vanish:
0 = ( ℓ f + ℓ i + 1 ) 2 ( ℓ f − ℓ i ) 2 − ( ℓ f + ℓ i + 1 ) 2 − ( ℓ f − ℓ i ) 2 + 1 = ( ( ℓ f + ℓ i + 1 ) 2 − 1 ) ( ( ℓ f − ℓ i ) 2 − 1 ) \begin{aligned}
0
&= (\ell_f + \ell_i + 1)^2 (\ell_f - \ell_i)^2 - (\ell_f + \ell_i + 1)^2 - (\ell_f - \ell_i)^2 + 1
\\
&= \big( (\ell_f + \ell_i + 1)^2 - 1 \big) \big( (\ell_f - \ell_i)^2 - 1 \big)
\end{aligned} 0 = ( ℓ f + ℓ i + 1 ) 2 ( ℓ f − ℓ i ) 2 − ( ℓ f + ℓ i + 1 ) 2 − ( ℓ f − ℓ i ) 2 + 1 = ( ( ℓ f + ℓ i + 1 ) 2 − 1 ) ( ( ℓ f − ℓ i ) 2 − 1 )
The first factor is zero if ℓ f = ℓ i = 0 \ell_f = \ell_i = 0 ℓ f = ℓ i = 0 ,
in which case the matrix element ⟨ f ∣ r ^ ∣ i ⟩ = 0 \matrixel{f}{\vu{r}}{i} = 0 ⟨ f ∣ r ^ ∣ i ⟩ = 0 anyway.
The other, non-trivial option is therefore:
( ℓ f − ℓ i ) 2 = 1 \begin{aligned}
(\ell_f - \ell_i)^2
= 1
\end{aligned} ( ℓ f − ℓ i ) 2 = 1
Rotational rules
Given a general (pseudo)scalar operator s ^ \hat{s} s ^ ,
which, by nature, must satisfy the
following relations with the angular momentum operators:
[ L ^ 2 , s ^ ] = 0 [ L ^ z , s ^ ] = 0 [ L ^ ± , s ^ ] = 0 \begin{aligned}
\comm{\hat{L}^2}{\hat{s}} = 0
\qquad
\comm{\hat{L}_z}{\hat{s}} = 0
\qquad
\comm{\hat{L}_{\pm}}{\hat{s}} = 0
\end{aligned} [ L ^ 2 , s ^ ] = 0 [ L ^ z , s ^ ] = 0 [ L ^ ± , s ^ ] = 0
Where L ^ ± ≡ L ^ x ± i L ^ y \hat{L}_\pm \equiv \hat{L}_x \pm i \hat{L}_y L ^ ± ≡ L ^ x ± i L ^ y .
The inner product of any such s ^ \hat{s} s ^ must obey these selection rules:
Δ ℓ = 0 Δ m = 0 \begin{aligned}
\boxed{
\Delta \ell = 0
}
\qquad \quad
\boxed{
\Delta m = 0
}
\end{aligned} Δ ℓ = 0 Δ m = 0
It is common to write this in the following more complete way, where
⟨ ℓ f ∣ ∣ s ^ ∣ ∣ ℓ i ⟩ \matrixel{\ell_f}{|\hat{s}|}{\ell_i} ⟨ ℓ f ∣ ∣ s ^ ∣ ∣ ℓ i ⟩ is the reduced matrix element ,
which is identical to ⟨ ℓ f m f ∣ s ^ ∣ ℓ i m i ⟩ \matrixel{\ell_f m_f}{\hat{s}}{\ell_i m_i} ⟨ ℓ f m f ∣ s ^ ∣ ℓ i m i ⟩ , but
with a different notation to say that it does not depend on m f m_f m f or m i m_i m i :
⟨ ℓ f m f ∣ s ^ ∣ ℓ i m i ⟩ = δ ℓ f ℓ i δ m f m i ⟨ ℓ f ∣ ∣ s ^ ∣ ∣ ℓ i ⟩ \begin{aligned}
\boxed{
\matrixel{\ell_f m_f}{\hat{s}}{\ell_i m_i}
= \delta_{\ell_f \ell_i} \delta_{m_f m_i} \matrixel{\ell_f}{|\hat{s}|}{\ell_i}
}
\end{aligned} ⟨ ℓ f m f ∣ s ^ ∣ ℓ i m i ⟩ = δ ℓ f ℓ i δ m f m i ⟨ ℓ f ∣ ∣ s ^ ∣ ∣ ℓ i ⟩
Proof
Proof.
Firstly, we look at the commutator of s ^ \hat{s} s ^ with the z z z -component L ^ z \hat{L}_z L ^ z :
0 = ⟨ ℓ f m f ∣ [ L ^ z , s ^ ] ∣ ℓ i m i ⟩ = ⟨ ℓ f m f ∣ L ^ z s ^ ∣ ℓ i m i ⟩ − ⟨ ℓ f m f ∣ s ^ L ^ z ∣ ℓ i m i ⟩ = ℏ ( m f − m i ) ⟨ ℓ f m f ∣ s ^ ∣ ℓ i m i ⟩ \begin{aligned}
0
= \matrixel{\ell_f m_f}{\comm{\hat{L}_z}{\hat{s}}}{\ell_i m_i}
&= \matrixel{\ell_f m_f}{\hat{L}_z \hat{s}}{\ell_i m_i} - \matrixel{\ell_f m_f}{\hat{s} \hat{L}_z}{\ell_i m_i}
\\
&= \hbar (m_f - m_i) \matrixel{\ell_f m_f}{\hat{s}}{\ell_i m_i}
\end{aligned} 0 = ⟨ ℓ f m f ∣ [ L ^ z , s ^ ] ∣ ℓ i m i ⟩ = ⟨ ℓ f m f ∣ L ^ z s ^ ∣ ℓ i m i ⟩ − ⟨ ℓ f m f ∣ s ^ L ^ z ∣ ℓ i m i ⟩ = ℏ ( m f − m i ) ⟨ ℓ f m f ∣ s ^ ∣ ℓ i m i ⟩
Which can only be true if m f − m i = 0 m_f \!-\! m_i = 0 m f − m i = 0 , unless,
of course, ⟨ ℓ f m f ∣ s ^ ∣ ℓ i m i ⟩ = 0 \matrixel{\ell_f m_f}{\hat{s}}{\ell_i m_i} = 0 ⟨ ℓ f m f ∣ s ^ ∣ ℓ i m i ⟩ = 0 by itself.
Secondly, we look at the commutator of s ^ \hat{s} s ^ with the total angular momentum L ^ 2 \hat{L}^2 L ^ 2 :
0 = ⟨ ℓ f m f ∣ [ L ^ 2 , s ^ ] ∣ ℓ i m i ⟩ = ⟨ ℓ f m f ∣ L ^ 2 s ^ ∣ ℓ i m i ⟩ − ⟨ ℓ f m f ∣ s ^ L ^ 2 ∣ ℓ i m i ⟩ = ℏ 2 ( ℓ f ( ℓ f + 1 ) − ℓ i ( ℓ i + 1 ) ) ⟨ ℓ f m f ∣ s ^ ∣ ℓ i m i ⟩ \begin{aligned}
0
= \matrixel{\ell_f m_f}{\comm{\hat{L}^2}{\hat{s}}}{\ell_i m_i}
&= \matrixel{\ell_f m_f}{\hat{L}^2 \hat{s}}{\ell_i m_i} - \matrixel{\ell_f m_f}{\hat{s} \hat{L}^2}{\ell_i m_i}
\\
&= \hbar^2 \big( \ell_f (\ell_f \!+\! 1) - \ell_i (\ell_i \!+\! 1) \big) \matrixel{\ell_f m_f}{\hat{s}}{\ell_i m_i}
\end{aligned} 0 = ⟨ ℓ f m f ∣ [ L ^ 2 , s ^ ] ∣ ℓ i m i ⟩ = ⟨ ℓ f m f ∣ L ^ 2 s ^ ∣ ℓ i m i ⟩ − ⟨ ℓ f m f ∣ s ^ L ^ 2 ∣ ℓ i m i ⟩ = ℏ 2 ( ℓ f ( ℓ f + 1 ) − ℓ i ( ℓ i + 1 ) ) ⟨ ℓ f m f ∣ s ^ ∣ ℓ i m i ⟩
Assuming ⟨ ℓ f m f ∣ s ^ ∣ ℓ i m i ⟩ ≠ 0 \matrixel{\ell_f m_f}{\hat{s}}{\ell_i m_i} \neq 0 ⟨ ℓ f m f ∣ s ^ ∣ ℓ i m i ⟩ = 0 ,
this can only be satisfied if the following holds:
0 = ℓ f 2 + ℓ f − ℓ i 2 − ℓ i = ( ℓ f + ℓ i ) ( ℓ f − ℓ i ) + ( ℓ f − ℓ i ) \begin{aligned}
0
= \ell_f^2 + \ell_f - \ell_i^2 - \ell_i
= (\ell_f + \ell_i) (\ell_f - \ell_i) + (\ell_f - \ell_i)
\end{aligned} 0 = ℓ f 2 + ℓ f − ℓ i 2 − ℓ i = ( ℓ f + ℓ i ) ( ℓ f − ℓ i ) + ( ℓ f − ℓ i )
If ℓ f = ℓ i = 0 \ell_f = \ell_i = 0 ℓ f = ℓ i = 0 this equation is trivially satisfied.
Otherwise, the only option is ℓ f − ℓ i = 0 \ell_f \!-\! \ell_i = 0 ℓ f − ℓ i = 0 ,
which is another part of the selection rule.
Thirdly, we look at the commutator of s ^ \hat{s} s ^ with the ladder operators L ^ ± \hat{L}_\pm L ^ ± :
0 = ⟨ ℓ f m f ∣ [ L ^ ± , s ^ ] ∣ ℓ i m i ⟩ = ⟨ ℓ f m f ∣ L ^ ± s ^ ∣ ℓ i m i ⟩ − ⟨ ℓ f m f ∣ s ^ L ^ ± ∣ ℓ i m i ⟩ = C f ⟨ ℓ f ( m f ∓ 1 ) ∣ s ^ ∣ ℓ i m i ⟩ − C i ⟨ ℓ f m f ∣ s ^ ∣ ℓ i ( m i ± 1 ) ⟩ \begin{aligned}
0
= \matrixel{\ell_f m_f}{\comm{\hat{L}_\pm}{\hat{s}}}{\ell_i m_i}
&= \matrixel{\ell_f m_f}{\hat{L}_\pm \hat{s}}{\ell_i m_i} - \matrixel{\ell_f m_f}{\hat{s} \hat{L}_\pm}{\ell_i m_i}
\\
&= C_f \matrixel{\ell_f (m_f\!\mp\!1)}{\hat{s}}{\ell_i m_i} - C_i \matrixel{\ell_f m_f}{\hat{s}}{\ell_i (m_i\!\pm\!1)}
\end{aligned} 0 = ⟨ ℓ f m f ∣ [ L ^ ± , s ^ ] ∣ ℓ i m i ⟩ = ⟨ ℓ f m f ∣ L ^ ± s ^ ∣ ℓ i m i ⟩ − ⟨ ℓ f m f ∣ s ^ L ^ ± ∣ ℓ i m i ⟩ = C f ⟨ ℓ f ( m f ∓ 1 ) ∣ s ^ ∣ ℓ i m i ⟩ − C i ⟨ ℓ f m f ∣ s ^ ∣ ℓ i ( m i ± 1 ) ⟩
Where C f C_f C f and C i C_i C i are constants given below.
We already know that Δ ℓ = 0 \Delta \ell = 0 Δ ℓ = 0 and Δ m = 0 \Delta m = 0 Δ m = 0 ,
so the above matrix elements are only nonzero if m f = m i ± 1 m_f = m_i \pm 1 m f = m i ± 1 .
Therefore:
C i = ℏ ℓ i ( ℓ i + 1 ) − m i ( m i ± 1 ) C f = ℏ ℓ f ( ℓ f + 1 ) − m f ( m f ∓ 1 ) = ℏ ℓ f ( ℓ f + 1 ) − ( m i ± 1 ) ( m i ± 1 ∓ 1 ) = ℏ ℓ f ( ℓ f + 1 ) − m i ( m i ± 1 ) \begin{aligned}
C_i
&= \hbar \sqrt{\ell_i (\ell_i + 1) - m_i (m_i \pm 1)}
\\
C_f
&= \hbar \sqrt{\ell_f (\ell_f \!+\! 1) - m_f (m_f \!\mp\! 1)}
\\
&= \hbar \sqrt{\ell_f (\ell_f \!+\! 1) - (m_i \!\pm\! 1) (m_i \!\pm\! 1 \!\mp\! 1)}
\\
&= \hbar \sqrt{\ell_f (\ell_f \!+\! 1) - m_i (m_i \!\pm\! 1)}
\end{aligned} C i C f = ℏ ℓ i ( ℓ i + 1 ) − m i ( m i ± 1 ) = ℏ ℓ f ( ℓ f + 1 ) − m f ( m f ∓ 1 ) = ℏ ℓ f ( ℓ f + 1 ) − ( m i ± 1 ) ( m i ± 1 ∓ 1 ) = ℏ ℓ f ( ℓ f + 1 ) − m i ( m i ± 1 )
In other words, C f = C i C_f = C_i C f = C i . The above equation therefore reduces to:
⟨ ℓ f m i ∣ s ^ ∣ ℓ i m i ⟩ = ⟨ ℓ f ( m i ± 1 ) ∣ s ^ ∣ ℓ i ( m i ± 1 ) ⟩ \begin{aligned}
\matrixel{\ell_f m_i}{\hat{s}}{\ell_i m_i}
&= \matrixel{\ell_f (m_i \!\pm\! 1)}{\hat{s}}{\ell_i (m_i\!\pm\!1)}
\end{aligned} ⟨ ℓ f m i ∣ s ^ ∣ ℓ i m i ⟩ = ⟨ ℓ f ( m i ± 1 ) ∣ s ^ ∣ ℓ i ( m i ± 1 ) ⟩
Which means that the value of the matrix element
does not depend on m i m_i m i (or m f m_f m f ) at all.
Similarly, given a general (pseudo)vector operator V ^ \vu{V} V ^ ,
which, by nature, must satisfy the following commutation relations,
where V ^ ± ≡ V ^ x ± i V ^ y \hat{V}_\pm \equiv \hat{V}_x \pm i \hat{V}_y V ^ ± ≡ V ^ x ± i V ^ y :
[ L ^ z , V ^ z ] = 0 [ L ^ z , V ^ ± ] = ± ℏ V ^ ± [ L ^ ± , V ^ z ] = ∓ ℏ V ^ ± [ L ^ ± , V ^ ± ] = 0 [ L ^ ± , V ^ ∓ ] = ± 2 ℏ V ^ z \begin{gathered}
\comm{\hat{L}_z}{\hat{V}_z} = 0
\qquad
\comm{\hat{L}_z}{\hat{V}_{\pm}} = \pm \hbar \hat{V}_{\pm}
\qquad
\comm{\hat{L}_{\pm}}{\hat{V}_z} = \mp \hbar \hat{V}_{\pm}
\\
\comm{\hat{L}_{\pm}}{\hat{V}_{\pm}} = 0
\qquad
\comm{\hat{L}_{\pm}}{\hat{V}_{\mp}} = \pm 2 \hbar \hat{V}_z
\end{gathered} [ L ^ z , V ^ z ] = 0 [ L ^ z , V ^ ± ] = ± ℏ V ^ ± [ L ^ ± , V ^ z ] = ∓ ℏ V ^ ± [ L ^ ± , V ^ ± ] = 0 [ L ^ ± , V ^ ∓ ] = ± 2ℏ V ^ z
The inner product of any such V ^ \vu{V} V ^ must obey the following selection rules:
Δ ℓ = 0 o r ± 1 Δ m = 0 o r ± 1 \begin{aligned}
\boxed{
\Delta \ell
= 0 \:\:\mathrm{or}\: \pm 1
}
\qquad
\boxed{
\Delta m
= 0 \:\:\mathrm{or}\: \pm 1
}
\end{aligned} Δ ℓ = 0 or ± 1 Δ m = 0 or ± 1
In fact, the complete result involves the Clebsch-Gordan coefficients (from spin addition):
⟨ ℓ f m f ∣ V ^ z ∣ ℓ i m i ⟩ = C m i 0 m f ℓ i 1 ℓ f ⟨ ℓ f ∣ ∣ V ^ ∣ ∣ ℓ i ⟩ ⟨ ℓ f m f ∣ V ^ + ∣ ℓ i m i ⟩ = − 2 C m i 1 m f ℓ i 1 ℓ f ⟨ ℓ f ∣ ∣ V ^ ∣ ∣ ℓ i ⟩ ⟨ ℓ f m f ∣ V ^ − ∣ ℓ i m i ⟩ = 2 C m i − 1 m f ℓ i 1 ℓ f ⟨ ℓ f ∣ ∣ V ^ ∣ ∣ ℓ i ⟩ \begin{gathered}
\boxed{
\matrixel{\ell_f m_f}{\hat{V}_{z}}{\ell_i m_i}
= C^{\ell_i \: 1 \: \ell_f}_{m_i \: 0 \:m_f} \matrixel{\ell_f}{|\hat{V}|}{\ell_i}
}
\\
\boxed{
\matrixel{\ell_f m_f}{\hat{V}_{+}}{\ell_i m_i}
= - \sqrt{2} C^{\ell_i \: 1 \: \ell_f}_{m_i \: 1 \:m_f} \matrixel{\ell_f}{|\hat{V}|}{\ell_i}
}
\\
\boxed{
\matrixel{\ell_f m_f}{\hat{V}_{-}}{\ell_i m_i}
= \sqrt{2} C^{\ell_i \: 1 \: \ell_f}_{m_i \: -1 \:m_f} \matrixel{\ell_f}{|\hat{V}}{|\ell_i}
}
\end{gathered} ⟨ ℓ f m f ∣ V ^ z ∣ ℓ i m i ⟩ = C m i 0 m f ℓ i 1 ℓ f ⟨ ℓ f ∣ ∣ V ^ ∣ ∣ ℓ i ⟩ ⟨ ℓ f m f ∣ V ^ + ∣ ℓ i m i ⟩ = − 2 C m i 1 m f ℓ i 1 ℓ f ⟨ ℓ f ∣ ∣ V ^ ∣ ∣ ℓ i ⟩ ⟨ ℓ f m f ∣ V ^ − ∣ ℓ i m i ⟩ = 2 C m i − 1 m f ℓ i 1 ℓ f ⟨ ℓ f ∣ ∣ V ^ ∣ ∣ ℓ i ⟩
Superselection rule
Selection rules are not always about atomic electron transitions, or angular momenta even.
According to the principle of indistinguishability ,
permuting identical particles never leads to an observable difference.
In other words, the particles are fundamentally indistinguishable,
so for any observable O ^ \hat{O} O ^ and multi-particle state ∣ Ψ ⟩ \Ket{\Psi} ∣ Ψ ⟩ , we can say:
⟨ Ψ ∣ O ^ ∣ Ψ ⟩ = ⟨ P ^ Ψ ∣ O ^ ∣ P ^ Ψ ⟩ \begin{aligned}
\matrixel{\Psi}{\hat{O}}{\Psi}
= \matrixel{\hat{P} \Psi}{\hat{O}}{\hat{P} \Psi}
\end{aligned} ⟨ Ψ ∣ O ^ ∣ Ψ ⟩ = ⟨ P ^ Ψ ∣ O ^ ∣ P ^ Ψ ⟩
Where P ^ \hat{P} P ^ is an arbitrary permutation operator.
Indistinguishability implies that [ P ^ , O ^ ] = 0 \comm{\hat{P}}{\hat{O}} = 0 [ P ^ , O ^ ] = 0
for all O ^ \hat{O} O ^ and P ^ \hat{P} P ^ ,
which lets us prove the above equation, using that P ^ \hat{P} P ^ is unitary:
⟨ P ^ Ψ ∣ O ^ ∣ P ^ Ψ ⟩ = ⟨ Ψ ∣ P ^ − 1 O ^ P ^ ∣ Ψ ⟩ = ⟨ Ψ ∣ P ^ − 1 P ^ O ^ ∣ Ψ ⟩ = ⟨ Ψ ∣ O ^ ∣ Ψ ⟩ \begin{aligned}
\matrixel{\hat{P} \Psi}{\hat{O}}{\hat{P} \Psi}
= \matrixel{\Psi}{\hat{P}^{-1} \hat{O} \hat{P}}{\Psi}
= \matrixel{\Psi}{\hat{P}^{-1} \hat{P} \hat{O}}{\Psi}
= \matrixel{\Psi}{\hat{O}}{\Psi}
\end{aligned} ⟨ P ^ Ψ ∣ O ^ ∣ P ^ Ψ ⟩ = ⟨ Ψ ∣ P ^ − 1 O ^ P ^ ∣ Ψ ⟩ = ⟨ Ψ ∣ P ^ − 1 P ^ O ^ ∣ Ψ ⟩ = ⟨ Ψ ∣ O ^ ∣ Ψ ⟩
Consider a symmetric state ∣ s ⟩ \Ket{s} ∣ s ⟩ and an antisymmetric state ∣ a ⟩ \Ket{a} ∣ a ⟩
(see Pauli exclusion principle ),
which obey the following for a permutation P ^ \hat{P} P ^ :
P ^ ∣ s ⟩ = ∣ s ⟩ P ^ ∣ a ⟩ = − ∣ a ⟩ \begin{aligned}
\hat{P} \Ket{s}
= \Ket{s}
\qquad
\hat{P} \Ket{a}
= - \Ket{a}
\end{aligned} P ^ ∣ s ⟩ = ∣ s ⟩ P ^ ∣ a ⟩ = − ∣ a ⟩
Any obervable O ^ \hat{O} O ^ then satisfies the equation below,
again thanks to the fact that P ^ = P ^ − 1 \hat{P} = \hat{P}^{-1} P ^ = P ^ − 1 :
⟨ s ∣ O ^ ∣ a ⟩ = ⟨ P ^ s ∣ O ^ ∣ a ⟩ = ⟨ s ∣ P ^ − 1 O ^ ∣ a ⟩ = ⟨ s ∣ O ^ P ^ ∣ a ⟩ = ⟨ s ∣ O ^ ∣ P ^ a ⟩ = − ⟨ s ∣ O ^ ∣ a ⟩ \begin{aligned}
\matrixel{s}{\hat{O}}{a}
= \matrixel{\hat{P} s}{\hat{O}}{a}
= \matrixel{s}{\hat{P}^{-1} \hat{O}}{a}
= \matrixel{s}{\hat{O} \hat{P}}{a}
= \matrixel{s}{\hat{O}}{\hat{P} a}
= - \matrixel{s}{\hat{O}}{a}
\end{aligned} ⟨ s ∣ O ^ ∣ a ⟩ = ⟨ P ^ s ∣ O ^ ∣ a ⟩ = ⟨ s ∣ P ^ − 1 O ^ ∣ a ⟩ = ⟨ s ∣ O ^ P ^ ∣ a ⟩ = ⟨ s ∣ O ^ ∣ P ^ a ⟩ = − ⟨ s ∣ O ^ ∣ a ⟩
This leads us to the superselection rule ,
which states that there can never be any interference
between states of different permutation symmetry:
⟨ s ∣ O ^ ∣ a ⟩ = 0 \begin{aligned}
\boxed{
\matrixel{s}{\hat{O}}{a}
= 0
}
\end{aligned} ⟨ s ∣ O ^ ∣ a ⟩ = 0
References
D.J. Griffiths, D.F. Schroeter,
Introduction to quantum mechanics , 3rd edition,
Cambridge.