summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore2
-rw-r--r--atom.py158
-rw-r--r--crystal.py138
-rw-r--r--density.py198
-rw-r--r--eigen.py187
-rw-r--r--element.py145
-rw-r--r--main.py127
-rw-r--r--visualize.py76
-rw-r--r--xc.py196
9 files changed, 1227 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000..b0204ef
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1,2 @@
+/__pycache__/*
+/result.csv
diff --git a/atom.py b/atom.py
new file mode 100644
index 0000000..c962a05
--- /dev/null
+++ b/atom.py
@@ -0,0 +1,158 @@
+from math import *
+from scipy.special import erf, sph_harm, eval_genlaguerre
+
+import numpy as np
+
+import element
+
+
+# Atomic Coulomb potential, modelled using HGH pseudopotentials.
+# See https://arxiv.org/abs/cond-mat/9803286 for details.
+class Atom:
+ def __init__(self, s, symbol, pos):
+ self.symbol = symbol
+ self.params = element.Element(symbol) # get element data
+ self.position = pos
+
+ # Set up local grid in spherical coordinates
+ self.r = np.zeros((s.Nres, s.Nres, s.Nres))
+ self.theta = np.zeros((s.Nres, s.Nres, s.Nres))
+ self.phi = np.zeros((s.Nres, s.Nres, s.Nres))
+ for i in range(s.Nres):
+ for j in range(s.Nres):
+ for k in range(s.Nres):
+ x = s.rx[i, j, k]
+ y = s.ry[i, j, k]
+ z = s.rz[i, j, k]
+
+ r = sqrt((x - pos[0])**2 + (y - pos[1])**2 + (z - pos[2])**2)
+ if r == 0:
+ theta = 0
+ phi = 0
+ else:
+ theta = acos((z - pos[2]) / r)
+ phi = atan2((y - pos[1]), (x - pos[0]))
+
+ self.r[i, j, k] = r
+ self.theta[i, j, k] = theta
+ self.phi[i, j, k] = phi
+
+ # Initialize and cache orbitals for nonlocal potential contribution
+ self.orbitals = {}
+ for l in range(0, 3):
+ self.orbitals[l] = {}
+ for i in range(1, 4):
+ p = self.get_projector(l, i)
+ self.orbitals[l][i] = {}
+ for m in range(-l, l + 1):
+ Y = self.cubic_harmonic(m, l)
+ self.orbitals[l][i][m] = p * Y
+
+
+ # Local potential representing short-range interactions.
+ # This is Eq.(1), but without the long-range erf-term:
+ def get_local_potential(self):
+ V = np.zeros_like(self.r)
+
+ rr = self.r / self.params.rloc # relative r
+ for i in range(4):
+ V += self.params.Cloc[i] * rr**(2 * i) * np.exp(-0.5 * rr**2)
+
+ return V
+
+
+ # The local erf-term decays as 1/r, which is problematic for periodicity.
+ # Instead, we replace it with a Hartree potential from a Gaussian charge.
+ # This is exact: multiply first term of Eq.(5) by g^2 (from Poisson).
+ def get_local_density(self):
+ alpha = 0.5 / self.params.rloc**2
+ rho = 4 * alpha**(3/2) * np.exp(-alpha * self.r**2) / sqrt(pi)
+
+ # Normalize in spherical coordinates: 4pi int rho(r) r^2 dr = Zion
+ rho *= self.params.Zion / (4 * pi)
+ return rho
+
+
+ # Given a psi in real space, apply nonlocal potential by integration
+ # Vpsi = sum_{lijm} |p_i> h_{ij} <p_j | psi>
+ def apply_nonlocal_potential(self, psi):
+ Vpsi = np.zeros_like(psi)
+
+ # Note that these if-statements provide a significant speedup
+ for l in range(0, 3):
+ if self.params.rl[l] != 0:
+ for i in range(1, 4):
+ for j in range(1, 4):
+ if self.params.h[l][i][j] != 0:
+ for m in range(-l, l + 1):
+ # Inner product normalization is handled by caller
+ ip = np.vdot(self.orbitals[l][j][m], psi)
+ Vpsi += self.orbitals[l][i][m] * self.params.h[l][i][j] * ip
+
+ return Vpsi
+
+
+ # Calculate projectors p_i^l(r) for nonlocal potential, see Eq.(3)
+ def get_projector(self, l, i):
+ p = np.zeros_like(self.r)
+
+ if self.params.rl[l] != 0:
+ p = sqrt(2) * self.r**(l + 2 * (i - 1))
+ p *= np.exp(-0.5 * (self.r / self.params.rl[l])**2)
+ p /= self.params.rl[l]**(l + 0.5 * (4 * i - 1))
+ p /= sqrt(gamma(l + 0.5 * (4 * i - 1)))
+
+ return p
+
+
+ # Guess this atom's electron density (to initialize main DFT loop)
+ def guess_density(self):
+ # We choose a spherical gaussian with standard deviation sigma
+ sigma = 1
+ rho = (sqrt(2 / pi) / sigma**3) * np.exp(- 0.5 * self.r**2 / sigma**2)
+
+ # Normalize in spherical coordinates: 4pi int rho(r) r^2 dr = Zion
+ rho /= self.params.Zion / (4 * pi)
+ return rho
+
+
+ # Guess this atom's eigenstates (to initialize eigensolver).
+ # We simply choose hydrogen orbitals, without any modifications:
+ def guess_orbitals(self, Norb):
+ psis = []
+ for n in range(1, 4):
+ rho = 2 * self.r / n
+ for l in range(0, n):
+ for m in range(-l, l + 1):
+ psi = self.cubic_harmonic(m, l)
+ psi *= np.exp(-0.5 * rho) * rho**l
+ psi *= eval_genlaguerre(n - l - 1, 2 * l + 1, rho)
+ psis.append(psi)
+
+ return psis[0 : Norb]
+
+
+ # Use cubic harmonics instead of spherical harmonics. This makes no
+ # physical difference, but it avoids confusion when visualizing.
+ def cubic_harmonic(self, m, l):
+ # Note that phi and theta are swapped according to SciPy
+ Yp = sph_harm( abs(m), l, self.phi, self.theta)
+ Yn = sph_harm(-abs(m), l, self.phi, self.theta)
+
+ f = np.zeros_like(self.r)
+ if m == -3:
+ f = (1 / sqrt(2)) * (Yn - Yp)
+ if m == -2:
+ f = (1j / sqrt(2)) * (Yn - Yp)
+ if m == -1:
+ f = (1 / sqrt(2)) * (Yn - Yp)
+ if m == 0:
+ f = Yp
+ if m == 1:
+ f = (1j / sqrt(2)) * (Yn + Yp)
+ if m == 2:
+ f = (1 / sqrt(2)) * (Yn + Yp)
+ if m == 3:
+ f = (1j / sqrt(2)) * (Yn + Yp)
+
+ return np.real(f)
diff --git a/crystal.py b/crystal.py
new file mode 100644
index 0000000..58a1cee
--- /dev/null
+++ b/crystal.py
@@ -0,0 +1,138 @@
+from math import *
+
+import numpy as np
+
+
+# Grid generator for direct and reciprocal space
+class UnitCell:
+ def __init__(self, N, basis):
+ self.N = N
+ self.d = basis / N # displacement basis of grid points
+
+
+ # Generate NxNxN grid to represent functions inside the cell
+ def grid_points(self):
+ gx = np.zeros((self.N, self.N, self.N))
+ gy = np.zeros_like(gx)
+ gz = np.zeros_like(gx)
+
+ if self.N % 2 == 0:
+ ns = range(-self.N // 2, self.N // 2)
+ else:
+ ns = range(-(self.N - 1) // 2, (self.N - 1) // 2 + 1)
+
+ for i in range(self.N):
+ for j in range(self.N):
+ for k in range(self.N):
+ v = ns[i] * self.d[0] + ns[j] * self.d[1] + ns[k] * self.d[2]
+ gx[i, j, k] = v[0]
+ gy[i, j, k] = v[1]
+ gz[i, j, k] = v[2]
+
+ return gx, gy, gz
+
+
+ # Volume of smallest parallelepiped representable on this grid
+ def differential_volume(self):
+ dV = np.dot(self.d[0], np.cross(self.d[1], self.d[2]))
+ return abs(dV)
+
+
+
+# Base class for periodic structures, don't use it directly
+class Crystal:
+ def __init__(self, N, basis):
+ self.a = basis
+ self.b = self.get_reciprocal_basis()
+ self.cell_direct = UnitCell(N, self.a)
+ self.cell_fourier = UnitCell(N, self.b * N)
+
+
+ def get_reciprocal_basis(self):
+ V = np.dot(self.a[0], np.cross(self.a[1], self.a[2]))
+ b1 = (2 * pi / V) * np.cross(self.a[1], self.a[2])
+ b2 = (2 * pi / V) * np.cross(self.a[2], self.a[0])
+ b3 = (2 * pi / V) * np.cross(self.a[0], self.a[1])
+ return np.array([b1, b2, b3])
+
+
+ def get_grid_direct(self):
+ rx, ry, rz = self.cell_direct.grid_points()
+ dr = self.cell_direct.differential_volume()
+ return rx, ry, rz, dr
+
+
+ def get_grid_fourier(self):
+ qx, qy, qz = self.cell_fourier.grid_points()
+ dq = self.cell_fourier.differential_volume()
+ return qx, qy, qz, dq
+
+
+ # Convert sequence of letters to coordinates for band structure plots.
+ # The letters' meanings are stored in a dictionary self.bz_points.
+ def get_brillouin_zone_path(self, chars):
+ path = []
+ for c in chars:
+ k = self.bz_points[c] # should probably catch KeyError here
+ p = k[0] * self.b[0] + k[1] * self.b[1] + k[2] * self.b[2]
+ path.append(p)
+
+ return path
+
+
+
+# Derived class for simple cubic (sc) crystals
+class CubicSimple(Crystal):
+ def __init__(self, N, a):
+ a1 = np.array((a, 0, 0))
+ a2 = np.array((0, a, 0))
+ a3 = np.array((0, 0, a))
+ super().__init__(N, np.array([a1, a2, a3]))
+
+ # Taken from http://lampx.tugraz.at/~hadley/ss1/bzones/sc.php
+ bz_points = {
+ "G" : (0, 0, 0),
+ "R" : (0.5, 0.5, 0.5),
+ "X" : (0, 0.5, 0),
+ "M" : (0.5, 0.5, 0)
+ }
+
+
+
+# Derived class for body-centered cubic (bcc) crystals
+class CubicBodyCentered(Crystal):
+ def __init__(self, N, a):
+ a1 = np.array((-a/2, a/2, a/2))
+ a2 = np.array(( a/2, -a/2, a/2))
+ a3 = np.array(( a/2, a/2, -a/2))
+ super().__init__(N, np.array([a1, a2, a3]))
+
+ # Taken from http://lampx.tugraz.at/~hadley/ss1/bzones/bcc.php
+ bz_points = {
+ "G" : ( 0, 0, 0),
+ "H" : (-0.5, 0.5, 0.5),
+ "P" : ( 0.25, 0.25, 0.25),
+ "N" : ( 0, 0.5, 0)
+ }
+
+
+
+# Derived class for face-centered cubic (fcc) crystals
+class CubicFaceCentered(Crystal):
+ def __init__(self, N, a):
+ a1 = np.array((0, a/2, a/2))
+ a2 = np.array((a/2, 0, a/2))
+ a3 = np.array((a/2, a/2, 0))
+ super().__init__(N, np.array([a1, a2, a3]))
+
+ # Taken from http://lampx.tugraz.at/~hadley/ss1/bzones/fcc.php
+ bz_points = {
+ "G" : (0, 0, 0),
+ "X" : (0, 0.5, 0.5),
+ "L" : (0.5, 0.5, 0.5),
+ "W" : (0.25, 0.75, 0.5),
+ "U" : (0.25, 0.625, 0.625),
+ "K" : (0.375, 0.75, 0.375)
+ }
+
+
diff --git a/density.py b/density.py
new file mode 100644
index 0000000..0162baf
--- /dev/null
+++ b/density.py
@@ -0,0 +1,198 @@
+from math import *
+from itertools import permutations
+
+import numpy as np
+import numpy.fft
+import numpy.linalg
+
+import eigen
+import xc
+
+
+# Get electron density by filling orbitals with electrons
+def get_density(psis, Nele):
+ rho = np.zeros_like(psis[0], dtype="float64")
+ for n in range(Nele):
+ rho += abs(psis[n // 2])**2
+ return rho
+
+
+# Given a density, calculate the Hartree (Coulomb) potential
+def get_hartree_potential(s, rho_r):
+ rho_q = np.fft.fftn(rho_r)
+
+ V_q = np.zeros_like(rho_q)
+ for i in range(s.Nres):
+ for j in range(s.Nres):
+ for k in range(s.Nres):
+ # Ignore the q=0 component, which gives a constant shift.
+ # This makes the cell neutral, eliminating long-range effects.
+ if s.q2[i, j, k] != 0:
+ V_q[i, j, k] = 4 * pi * rho_q[i, j, k] / s.q2[i, j, k]
+ V_r = np.fft.ifftn(V_q)
+
+ return np.real(V_r)
+
+
+# Pulay mixing: try this one weird trick to accelerate your convergence!
+# Linearly combine several old densities to get a new density,
+# which is hopefully closer to the self-consistent optimum.
+def mix_densities(fhist, Rhist):
+ # Number of old functions to combine
+ Nmix = min(5, max(2, len(fhist)))
+
+ # We need at least two old densities to work with.
+ # On the first SCF iteration, we return the raw output density.
+ if len(fhist) < Nmix:
+ return fhist[-1] + Rhist[-1]
+
+ # Number of initial elements to ignore in the history
+ offset = len(fhist) - Nmix
+
+ # Set up the system matrix
+ A = np.zeros((Nmix, Nmix), dtype=fhist[-1].dtype)
+ for r in range(Nmix):
+ for c in range(Nmix):
+ A[r, c] = np.vdot(Rhist[offset + r], Rhist[offset + c])
+
+ # Solve the system using matrix inversion, see for example
+ # Eq.(38) in https://doi.org/10.1103/PhysRevB.54.11169
+ try:
+ Ainv = np.linalg.inv(A)
+ alphas = Ainv.sum(axis=1)
+ alphas /= alphas.sum()
+ except np.linalg.LinAlgError: # A is singular
+ alphas = np.zeros(Nmix)
+ alphas[-1] = 1.0
+
+ # Construct next function as a linear combination of history.
+ # Beta "nudges" result, to prevent getting stuck in a subspace.
+ beta = 0.1
+ f = np.zeros_like(fhist[-1])
+ for n in range(Nmix):
+ f += alphas[n] * (fhist[offset + n] + beta * Rhist[offset + n])
+
+ return f
+
+
+# Generate list of k-points that nicely covers the first Brillouin zone
+def sample_brillouin_zone(s):
+ N = s.bzmesh
+ # Generate N0xN1xN2 k-points using Monkhorst-Pack scheme
+ kpoints = []
+ for n0 in range(1, N[0] + 1):
+ for n1 in range(1, N[1] + 1):
+ for n2 in range(1, N[2] + 1):
+ t0 = (2 * n0 - N[0] - 1) / (2 * N[0]) * s.crystal.b[0]
+ t1 = (2 * n1 - N[1] - 1) / (2 * N[1]) * s.crystal.b[1]
+ t2 = (2 * n2 - N[2] - 1) / (2 * N[2]) * s.crystal.b[2]
+ kpoints.append(t0 + t1 + t2)
+
+ # Thanks to symmetry, most of these k-points are redundant.
+ # which we will exploit to greatly improve performance.
+
+ # This can be done much better; these are my messy hacks.
+
+ # Remember for each point, what it is equivalent to (maybe only itself)
+ equivto = list(range(len(kpoints)))
+ for i in range(len(kpoints)):
+ # Cubic crystal symmetry:
+ # Permute Cartesian components to find equivalences (this feels dirty)
+ perms = set(permutations(tuple(abs(kpoints[i]))))
+ for j in range(0, i): # only consider previous points
+ if tuple(abs(kpoints[j])) in perms:
+ equivto[i] = j
+ break
+
+ # Each k gets a weight based on how many equivalent points it has
+ weights = []
+ for i in range(len(kpoints)):
+ weights.append(equivto.count(i))
+ # Delete redundant points, yielding a >75% reduction in computation
+ for i in reversed(range(len(kpoints))):
+ if weights[i] == 0:
+ del kpoints[i]
+ del weights[i]
+
+ return kpoints, weights
+
+
+# Static local potential contribution, from the atoms in the cell
+def get_local_external_potential(s, Nele):
+ Vloc_r = np.zeros((s.Nres, s.Nres, s.Nres))
+ rhon_r = np.zeros((s.Nres, s.Nres, s.Nres))
+ for a in s.atoms:
+ Vloc_r += a.get_local_potential()
+ rhon_r += a.get_local_density()
+
+ # Coulomb potential from ionic compensation charge
+ rhon_r /= np.sum(rhon_r) * s.dr / Nele # ensure normalization
+ Vion_r = get_hartree_potential(s, -rhon_r)
+
+ return Vloc_r + Vion_r
+
+
+# The whole point of DFT: iteratively find the self-consistent electron density
+def get_selfconsistent_density(s, thresh=1e-8):
+ # Initial guess for mean electron density
+ rho = np.zeros((s.Nres, s.Nres, s.Nres))
+ Nele = 0 # number of electrons
+ for a in s.atoms:
+ rho += a.guess_density()
+ Nele += a.params.Zion
+ rho /= np.sum(rho) * s.dr / Nele # ensure normalization
+
+ # This is the "external potential" we use as a base (sans nonlocality)
+ Vext = get_local_external_potential(s, Nele)
+
+ # Get weighted set of k-points in first Brillouin zone
+ ksamples, kweights = sample_brillouin_zone(s)
+
+ # Each k-point gives a certain density contribution
+ rhos = []
+ for k in ksamples:
+ rhos.append(rho.copy())
+
+ # Histories for Pulay density mixing
+ rho_hist = []
+ residue_hist = []
+ # You could do Pulay mixing separately for each k-point's density,
+ # but according to my tests, that makes no meaningful difference.
+
+ cycles = 0
+ improv = 1
+ # Main self-consistency loop, where the magic happens
+ while improv > thresh:
+ cycles += 1
+ print("Self-consistency cycle {} running...".format(cycles))
+
+ # Calculate additional potential from mean density
+ Vh = get_hartree_potential(s, rho)
+ #Vx = xc.get_x_potential_gga_lb(s, rho)
+ #Vc = xc.get_c_potential_gga_lyp(s, rho)
+ #Vxc = xc.get_xc_potential_lda_teter93(s, rho)
+ Vxc = xc.get_x_potential_lda_slater(s, rho)
+ Veff = Vext + Vh + Vxc
+
+ for i in range(len(ksamples)):
+ prefix = " ({}/{}) ".format(i + 1, len(ksamples))
+ energies, psis_r, psis_q = eigen.solve_kohnsham_equation(s, Veff, ksamples[i], prefix)
+ rhos[i] = get_density(psis_r, Nele)
+
+ # Calculate new average density from orbitals
+ rho_new = np.zeros((s.Nres, s.Nres, s.Nres))
+ for i in range(len(rhos)):
+ rho_new += kweights[i] * rhos[i]
+ rho_new /= sum(kweights)
+
+ # Get next cycle's input density from Pulay mixing
+ rho_hist.append(rho)
+ residue_hist.append(rho_new - rho)
+ rho = mix_densities(rho_hist, residue_hist)
+
+ # Use the norm of the residual as a metric for convergence
+ improv = np.sum(residue_hist[-1]**2) * s.dr / Nele**2
+ print(" Cycle {} done, improvement {:.2e}".format(cycles, improv))
+
+ print("Found self-consistent electron density in {} cycles".format(cycles))
+ return rho, Veff
diff --git a/eigen.py b/eigen.py
new file mode 100644
index 0000000..1dbb2a9
--- /dev/null
+++ b/eigen.py
@@ -0,0 +1,187 @@
+from math import *
+
+import numpy as np
+import numpy.fft
+
+import visualize
+
+
+# Normalize wavefunction with respect to volume element dV
+def normalize(state, dV):
+ norm2 = np.vdot(state, state) * dV
+ return state / sqrt(abs(norm2))
+
+
+# Gram-Schmidt orthonormalization with respect to dV
+def orthonormalize(basis, dV):
+ for n in range(len(basis)):
+ psi = basis[n]
+
+ for i in range(n):
+ psi -= basis[i] * np.vdot(basis[i], psi) * dV
+
+ basis[n] = normalize(psi, dV)
+
+ return basis
+
+
+# Zero all components with kinetic energy less than Ecut
+def enforce_cutoff(s, psis_q, kq2):
+ for i in range(s.Nres):
+ for j in range(s.Nres):
+ for k in range(s.Nres):
+ if kq2[i, j, k] > 2 * s.Ecut:
+ for psi_q in psis_q:
+ psi_q[i, j, k] = 0
+ return orthonormalize(psis_q, s.dq)
+
+
+# Apply the Kohn-Sham Hamiltonian to a normalized state psi
+def apply_hamiltonian(s, psi_q, Veff_r, kq2):
+ # Apply kinetic energy in q-domain
+ Tpsi_q = 0.5 * kq2 * psi_q
+
+ # Apply local+nonlocal potential in r-domain
+ psi_r = np.fft.ifftn(psi_q)
+ # We don't normalize: the iFFT ensures a correctly normalized result
+ Vpsi_r = Veff_r * psi_r # local part
+ for a in s.atoms: # nonlocal part
+ Vnon_r = a.apply_nonlocal_potential(psi_r) * s.dr
+ Vpsi_r += Vnon_r
+ Vpsi_q = np.fft.fftn(Vpsi_r)
+
+ return Tpsi_q + Vpsi_q
+
+
+# Resisual vector R, which the eigensolver tries to minimize
+def get_residual(s, psi_q, Hpsi_q, kq2):
+ ene = np.vdot(psi_q, Hpsi_q) * s.dq # assuming normalization
+ R_q = Hpsi_q - ene * psi_q
+
+ # Calculate preconditioned residual PR for faster convergence:
+ # The ideal PR satisfies PR = (H - ene)^-1 R, such that (H - ene) PR = R.
+ # This operator (H - ene) is hard to invert, so we approximate it using
+ # the kinetic energy only: -0.5 \nabla^2 PR = R (the Poisson equation).
+ PR_q = 2 * R_q / (kq2 + 1)
+ # This is an even rougher approximation, but it works well enough.
+
+ return PR_q
+
+
+# One iteration of the block Davidson eigensolver algorithm
+def diagonalize_subspace(s, psis, V, kq2):
+ # Apply Hamiltonian to psis and cache results
+ Hbasis = []
+ for n in range(len(psis)):
+ Hbasis.append(apply_hamiltonian(s, psis[n], V, kq2))
+
+ # Calculate corresponding residuals
+ resids = []
+ for n in range(len(psis)):
+ R = get_residual(s, psis[n], Hbasis[n], kq2)
+ resids.append(R)
+
+ # Augment the input basis (psis) with the residuals
+ basis = psis + resids
+ basis = enforce_cutoff(s, basis, kq2)
+
+ Ndim = len(basis)
+
+ # Apply Hamiltonian to orthonormalized residuals and cache results
+ for n in range(len(psis), Ndim):
+ Hbasis.append(apply_hamiltonian(s, basis[n], V, kq2))
+
+ # Subspace Hamiltonian matrix with elements <basis[i] | H | basis[j]>
+ Hsub = np.zeros((Ndim, Ndim), dtype="complex128")
+ # Exploit Hermiticity: only calculate the diagonal and upper triangle,
+ # then copy the elements from the upper to the lower triangle.
+ for r in range(Ndim):
+ for c in range(r, Ndim):
+ Hsub[r, c] = np.vdot(basis[r], Hbasis[c]) * s.dq
+ for r in range(Ndim):
+ for c in range(0, r):
+ Hsub[r, c] = np.conj(Hsub[c, r])
+
+ # Find the eigenvectors and eigenvalues of Hsub
+ evals, evecs = np.linalg.eigh(Hsub)
+
+ # Express the eigenvectors in the original basis (input psis)
+ result = []
+ for n in range(Ndim // 2):
+ psi = np.zeros((s.Nres, s.Nres, s.Nres), dtype="complex128")
+ for b in range(Ndim):
+ psi += basis[b] * evecs[b, n]
+ result.append(psi)
+
+ return evals, result
+
+
+# Small optimization: cache |k+q|^2 ahead of time
+def cache_kinetic_factor(s, kpoint):
+ kq2 = np.zeros((s.Nres, s.Nres, s.Nres))
+ for i in range(s.Nres):
+ for j in range(s.Nres):
+ for k in range(s.Nres):
+ q = np.array((s.qx[i, j, k], s.qy[i, j, k], s.qz[i, j, k]))
+ kq = kpoint + q
+ kq2[i, j, k] = np.dot(kq, kq)
+ return kq2
+
+
+# Initial guess from atoms' individual (approximate) orbitals
+def guess_orbitals(s):
+ psis_q = []
+ for a in s.atoms:
+ psis_r = a.guess_orbitals(s.Norb)
+
+ # Convert guesses to Fourier space
+ for psi_r in psis_r:
+ psi_q = np.fft.fftn(psi_r)
+ psis_q.append(psi_q)
+
+ return orthonormalize(psis_q, s.dq)
+
+
+# Get lowest eigenvalues and eigenstates of Kohn-Sham equation
+def solve_kohnsham_equation(s, V, k, prefix="", thresh=1e-4):
+ kq2 = cache_kinetic_factor(s, k)
+
+ # Initialize psis, which we will refine shortly
+ psis_q = guess_orbitals(s)
+
+ print(prefix + "Eigensolver cycle 1 running...")
+ cycles = 0
+ improv = 1
+ energy_old = 0
+ # Iterative eigensolver loop
+ while improv > thresh:
+ cycles += 1
+
+ # Eliminate high-frequency noise (little effect in practice)
+ psis_q = enforce_cutoff(s, psis_q, kq2)
+
+ # Refine eigenstates using one step of the block Davidson method
+ energies, psis_q = diagonalize_subspace(s, psis_q, V, kq2)
+
+ # To measure progress, we look at the change of (N+1)th eigenvalue,
+ # where N is the number of bands we are interested in converging.
+ energy_new = energies[s.Neig]
+ improv = abs(energy_new - energy_old) / abs(energy_new)
+ energy_old = energy_new
+
+ # Clear line and (re)print progress information
+ print("\033[A\033[2K" + prefix, end="")
+ print("Eigensolver cycle {} done".format(cycles), end="")
+ if cycles > 1:
+ print(", improvement {:.2e}".format(improv), end="")
+ print("")
+
+ # Convert psis to real space and normalize them there
+ psis_r = []
+ for n in range(len(psis_q)):
+ psi_r = np.fft.ifftn(psis_q[n])
+ psis_r.append(normalize(psi_r, s.dr))
+
+ # energies is a NumPy array right now
+ return energies.tolist(), psis_r, psis_q
+
diff --git a/element.py b/element.py
new file mode 100644
index 0000000..a8111ad
--- /dev/null
+++ b/element.py
@@ -0,0 +1,145 @@
+from math import *
+
+
+# Interface to the HGH pseudopotential parameters.
+# See https://arxiv.org/abs/cond-mat/9803286
+class Element:
+ def __init__(self, symbol):
+ # Get raw data from the table below
+ global elements
+ el = elements[symbol]
+
+ self.Zion = el[0]
+ self.rloc = el[1]
+ self.Cloc = [el[2], el[3], el[4], el[5]]
+ self.rl = [el[6], el[10], el[14]]
+
+ self.h = {}
+ for l in range(0, 3):
+ self.h[l] = {}
+ for i in range(1, 4):
+ self.h[l][i] = {}
+ # Only the diagonal h-values are explicitly given
+ self.h[l][i][i] = el[6 + 4 * l + i]
+
+ # Calculate the off-diagonal h-values, see Eqs.(20)-(28)
+ self.h[0][1][2] = -(1/2) * sqrt( 3/ 5) * self.h[0][2][2]
+ self.h[0][1][3] = (1/2) * sqrt( 5/ 21) * self.h[0][3][3]
+ self.h[0][2][3] = -(1/2) * sqrt(100/ 63) * self.h[0][3][3]
+ self.h[1][1][2] = -(1/2) * sqrt( 5/ 7) * self.h[1][2][2]
+ self.h[1][1][3] = (1/6) * sqrt( 35/ 11) * self.h[1][3][3]
+ self.h[1][2][3] = -(1/6) * sqrt(196/ 11) * self.h[1][3][3]
+ self.h[2][1][2] = -(1/2) * sqrt( 7/ 9) * self.h[2][2][2]
+ self.h[2][1][3] = (1/2) * sqrt( 63/143) * self.h[2][3][3]
+ self.h[2][2][3] = -(1/2) * sqrt(324/143) * self.h[2][3][3]
+
+ # Mirror around diagonal, see Eq.(29)
+ for l in range(0, 3):
+ for i in range(1, 4):
+ for j in range(1, i):
+ self.h[l][i][j] = self.h[l][j][i]
+
+
+# Raw HGH pseudopotential parameters for semiconductor materials.
+# See https://arxiv.org/abs/cond-mat/9803286
+#
+# Indices: Meanings:
+# 0 Zion
+# 1 2 3 4 5 rloc C1 C2 C3 C4
+# 6 7 8 9 r0 h0_1 h0_2 h0_3
+# 10 11 12 13 r1 h1_1 h1_2 h1_3
+# 14 15 16 17 r2 h2_1 h2_2 h2_3
+elements = {
+ "B" : [3,
+ 0.433930, -5.578642, 0.804251, 0.000000, 0.000000,
+ 0.373843, 6.233928, 0.000000, 0.000000,
+ 0.360393, 0.000000, 0.000000, 0.000000,
+ 0.000000, 0.000000, 0.000000, 0.000000],
+ "C" : [4,
+ 0.348830, -8.513771, 1.228432, 0.000000, 0.000000,
+ 0.304553, 9.522842, 0.000000, 0.000000,
+ 0.232677, 0.000000, 0.000000, 0.000000,
+ 0.000000, 0.000000, 0.000000, 0.000000],
+ "N" : [5,
+ 0.289179, -12.234820, 1.766407, 0.000000, 0.000000,
+ 0.256605, 13.552243, 0.000000, 0.000000,
+ 0.270134, 0.000000, 0.000000, 0.000000,
+ 0.000000, 0.000000, 0.000000, 0.000000],
+ "O" : [6,
+ 0.247621, -16.580318, 2.395701, 0.000000, 0.000000,
+ 0.221786, 18.266917, 0.000000, 0.000000,
+ 0.256829, 0.000000, 0.000000, 0.000000,
+ 0.000000, 0.000000, 0.000000, 0.000000],
+ "Al" : [3,
+ 0.450000, -8.491351, 0.000000, 0.000000, 0.000000,
+ 0.460104, 5.088340, 2.679700, 0.000000,
+ 0.536744, 2.193438, 0.000000, 0.000000,
+ 0.000000, 0.000000, 0.000000, 0.000000],
+ "Si" : [4,
+ 0.440000, -7.336103, 0.000000, 0.000000, 0.000000,
+ 0.422738, 5.906928, 3.258196, 0.000000,
+ 0.484278, 2.727013, 0.000000, 0.000000,
+ 0.000000, 0.000000, 0.000000, 0.000000],
+ "P" : [5,
+ 0.430000, -6.654220, 0.000000, 0.000000, 0.000000,
+ 0.389803, 6.842136, 3.856693, 0.000000,
+ 0.440796, 3.282606, 0.000000, 0.000000,
+ 0.000000, 0.000000, 0.000000, 0.000000],
+ "S" : [6,
+ 0.420000, -6.554492, 0.000000, 0.000000, 0.000000,
+ 0.361757, 7.905303, 4.471698, 0.000000,
+ 0.405285, 3.866579, 0.000000, 0.000000,
+ 0.000000, 0.000000, 0.000000, 0.000000],
+ "Zn" : [2,
+ 0.570000, 0.000000, 0.000000, 0.000000, 0.000000,
+ 0.640712, 2.088557, -0.218270, -0.941317,
+ 0.967605, 0.163546, -0.227086, 0.000000,
+ 1.330352, 0.010486, 0.000000, 0.000000],
+ "Ga" : [3,
+ 0.560000, 0.000000, 0.000000, 0.000000, 0.000000,
+ 0.610791, 2.369325, -0.249015, -0.551796,
+ 0.704596, 0.746305, -0.513132, 0.000000,
+ 0.982580, 0.075437, 0.000000, 0.000000],
+ "Ge" : [4,
+ 0.540000, 0.000000, 0.000000, 0.000000, 0.000000,
+ 0.493743, 3.826891, 1.100231, -1.344218,
+ 0.601064, 1.362518, -0.627370, 0.000000,
+ 0.788369, 0.191205, 0.000000, 0.000000],
+ "As" : [5,
+ 0.520000, 0.000000, 0.000000, 0.000000, 0.000000,
+ 0.456400, 4.560761, 1.692389, -1.373804,
+ 0.550562, 1.812247, -0.646727, 0.000000,
+ 0.685283, 0.312373, 0.000000, 0.000000],
+ "Se" : [6,
+ 0.510000, 0.000000, 0.000000, 0.000000, 0.000000,
+ 0.432531, 5.145131, 2.052009, -1.369203,
+ 0.472473, 2.858806, -0.590671, 0.000000,
+ 0.613420, 0.434829, 0.000000, 0.000000],
+ "Cd" : [2,
+ 0.625000, -1.796838, 0.000000, 0.000000, 0.000000,
+ 0.828465, 1.485292, -0.424753, -0.407986,
+ 0.972873, 0.469208, -0.448111, 0.000000,
+ 1.240949, 0.065412, 0.000000, 0.000000],
+ "In" : [3,
+ 0.610000, 2.865777, 0.000000, 0.000000, 0.000000,
+ 0.770602, 1.256194, -0.397255, -0.278329,
+ 0.858132, 0.494459, -0.380789, 0.000000,
+ 1.088691, 0.129208, 0.000000, 0.000000],
+ "Sn" : [4,
+ 0.605000, 4.610912, 0.000000, 0.000000, 0.000000,
+ 0.663544, 1.648791, -0.141974, -0.576546,
+ 0.745865, 0.769355, -0.445070, 0.000000,
+ 0.944459, 0.225115, 0.000000, 0.000000],
+ "Sb" : [5,
+ 0.590000, 6.680228, 0.000000, 0.000000, 0.000000,
+ 0.597684, 1.951477, 0.037537, -0.786631,
+ 0.672122, 0.970313, -0.466731, 0.000000,
+ 0.856557, 0.300103, 0.000000, 0.000000],
+ "Te" : [6,
+ 0.575000, 9.387085, 0.000000, 0.000000, 0.000000,
+ 0.556456, 2.046890, -0.029333, -0.881119,
+ 0.615262, 1.033478, -0.481172, 0.000000,
+ 0.805101, 0.317411, 0.000000, 0.000000],
+}
+
+
diff --git a/main.py b/main.py
new file mode 100644
index 0000000..23a21fc
--- /dev/null
+++ b/main.py
@@ -0,0 +1,127 @@
+import csv
+import math
+
+import numpy as np
+
+import atom
+import crystal
+import density
+import eigen
+
+
+class Settings:
+ pass
+
+
+# Set up the object "s" that contains all settings for the run.
+# After this function, "s" is not modified. Adjust settings here.
+def initialize():
+ s = Settings()
+
+ # Resolution: store functions on an NxNxN grid
+ s.Nres = 16
+
+ # Lattice constant of conventional cell, in Bohr radii
+ #a = 6.7463 # C
+ a = 10.261 # Si
+ #a = 10.298 # GaP
+ #a = 10.683 # Ge/GaAs
+ #a = 11.449 # InAs
+
+ # Crystal structure, choose Cubic{Simple,BodyCentered,FaceCentered}
+ s.crystal = crystal.CubicFaceCentered(s.Nres, a)
+ # Grid dimensions for k-point sampling of Brillouin zone
+ s.bzmesh = (3, 3, 3)
+
+ # Sequence of Brillouin zone symmetry points for band structure plot
+ s.bzpath = "LGXWULWXUG"
+ # Number of substeps to take between two symmetry points in bzpath
+ s.Nbzsub = 10
+
+ # Number of orbitals to use per atom (but not necessarily converge)
+ s.Norb = 8
+ # Number of total Kohn-Sham eigenstates to converge
+ s.Neig = 12
+
+ # Elements and positions of atoms in the unit cell.
+ # Positions are expressed in the cell basis (a1,a2,a3).
+ atoms = [
+ ("Si", (-0.125, -0.125, -0.125)),
+ ("Si", ( 0.125, 0.125, 0.125)),
+ ]
+
+ # Plane-wave cutoff energy in Hartree
+ s.Ecut = 50
+
+ # Finalize the "s" object. Avoid editing below this line.
+
+ # Get the grid point coordinates in direct and Fourier space
+ s.rx, s.ry, s.rz, s.dr = s.crystal.get_grid_direct()
+ s.qx, s.qy, s.qz, s.dq = s.crystal.get_grid_fourier()
+ # Remember to call fftshift before plotting!
+ s.qx = np.fft.ifftshift(s.qx)
+ s.qy = np.fft.ifftshift(s.qy)
+ s.qz = np.fft.ifftshift(s.qz)
+
+ # For convenience
+ s.r2 = s.rx**2 + s.ry**2 + s.rz**2
+ s.q2 = s.qx**2 + s.qy**2 + s.qz**2
+
+ # Place the atoms on the grid as specified in "atoms"
+ s.atoms = []
+ basis = s.crystal.a
+ for a in atoms:
+ pos = a[1][0] * basis[0] + a[1][1] * basis[1] + a[1][2] * basis[2]
+ s.atoms.append(atom.Atom(s, a[0], pos))
+
+ return s
+
+
+def main():
+ # Get settings object "s"
+ s = initialize()
+
+ # It would be madness to try to converge the electron density
+ # for all band structure k-points at the same time, so instead
+ # we converge it for a small set and then assume it's fixed.
+ rho, Veff = density.get_selfconsistent_density(s)
+ print("\nCalculating band structure with fixed electron density")
+
+ # Get list of positions of high-symmetry k-points
+ ksteps = s.crystal.get_brillouin_zone_path(s.bzpath)
+ Nsteps = len(ksteps) - 1
+
+ # Total distance in k-space, used for first CSV column
+ kdistance = 0.0
+
+ # Open output CSV file for writing
+ file = open("result.csv", "w", newline="")
+ csvw = csv.writer(file, quoting=csv.QUOTE_MINIMAL)
+
+ # Loop over symmetry points, except last one
+ for i in range(Nsteps):
+ print("Band calculation part {}/{} running...".format(i + 1, Nsteps))
+
+ # Subdivide path between this point and next point
+ if i < Nsteps - 1:
+ ksubs = np.linspace(ksteps[i], ksteps[i + 1], s.Nbzsub, endpoint=False)
+ else: # include endpoint in last iteration
+ ksubs = np.linspace(ksteps[i], ksteps[i + 1], s.Nbzsub + 1, endpoint=True)
+
+ # Loop over points on subdivided path
+ for j, kp in enumerate(ksubs):
+ # Solve Kohn-Sham equation for this k-point, with fixed Veff
+ pf = " ({}/{}) ".format(j + 1, len(ksubs))
+ energies, psis_r, psis_q = eigen.solve_kohnsham_equation(s, Veff, kp, pf)
+
+ csvw.writerow([kdistance] + energies[0 : s.Neig])
+
+ # Keep track of how far we moved in k-space
+ kd = np.linalg.norm(ksteps[i + 1] - ksteps[i])
+ kdistance += kd / s.Nbzsub
+
+ file.close()
+
+
+if __name__ == "__main__":
+ main()
diff --git a/visualize.py b/visualize.py
new file mode 100644
index 0000000..6746458
--- /dev/null
+++ b/