summaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/lock_acquire.asm204
-rw-r--r--src/lock_release.asm132
-rw-r--r--src/thread_create.asm264
-rw-r--r--src/thread_finish.asm147
4 files changed, 747 insertions, 0 deletions
diff --git a/src/lock_acquire.asm b/src/lock_acquire.asm
new file mode 100644
index 0000000..f32ba6a
--- /dev/null
+++ b/src/lock_acquire.asm
@@ -0,0 +1,204 @@
+; Under MIT license, see /LICENSE.txt
+
+
+; Cheat sheet for Linux' x86_64 calling convention:
+;
+; - free to overwrite (caller should save them):
+; rax, rcx, rdx, rsi, rdi, r8-r11, xmm0-xmm15
+; - caller expects be kept (callee should save them):
+; rbx, rbp, r12-r15
+;
+; - for passing paramters to functions:
+; rdi, rsi, rdx, rcx, r8, r9, xmm0-xmm7
+; - for getting return values from functions:
+; rax, rdx, xmm0
+;
+; - for passing parameters to syscalls:
+; rax, rdi, rsi, rdx, r10, r8, r9
+; - for getting return values from syscalls:
+; rax, rdx
+; - overwritten by syscalls (all others preserved):
+; rcx, r11
+
+
+section .text
+
+
+; Relevant system call IDs
+%define SYS_GETTID 186
+%define SYS_FUTEX 202
+
+; Relevant operations for futex
+%define FUTEX_LOCK_PI 6
+%define FUTEX_PRIVATE_FLAG 0x80
+
+; Relevant bits for futex dword
+%define FUTEX_TID_MASK 0x3fffffff
+%define FUTEX_OWNER_DIED 0x40000000
+%define FUTEX_WAITERS 0x80000000
+
+
+; Acquire a lock if possible, or wait until it gets released. Argument:
+; rdi: struct{u32,u32,u32}* = handle of lock to acquire
+; Returns zero on success, or a standard error code.
+global linen_lock_acquire
+linen_lock_acquire:
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ ;;;; Check validity of argument ;;;;
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+ ; Return EINVAL if rdi is NULL or otherwise invalid
+ mov eax, -22 ; (EINVAL = -22)
+
+ test rdi, rdi
+ jz acquire_return ; rdi is NULL
+
+ ; rdi is nonzero, so let's just assume it's a valid pointer;
+ ; if that assumption is wrong we'll get a segmentation fault.
+ ; But we don't yet trust that [rdi] is a valid lock handle!
+ ; To verify this we check the canary value stored at [rdi + 8].
+ mov ecx, [rdi + 8]
+ cmp ecx, 0xCAFEBABE
+ jnz acquire_return
+
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ ;;;; Check ownership of lock ;;;;
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+ ; Lock owners are identified by their TID; let's find ours.
+ ; The gettid system call simply returns our Linux thread ID.
+ ; See: man 2 gettid
+
+ ; gettid: rax = system call ID
+ mov eax, SYS_GETTID
+ ; gettid: rax = gettid()
+ syscall
+
+ ; Save a copy of our TID (no need for an error check)
+ mov edx, eax
+
+ ; There are four possible ownership situations for the lock,
+ ; which we can distinguish based on the dword value at [rdi]:
+ ; - Case 1: if [rdi] contains zero, then the lock is available.
+ ; - Case 2: if [rdi] has any of its highest 2 bits set, then the
+ ; lock isn't free, and kernel intervention is required.
+ ; - Case 3: if the lower 30 bits of [rdi] contain our TID,
+ ; then we already own it (recursive acquisition).
+ ; - Case 4: if the lower 30 bits of [rdi] contain another TID
+ ; and the high-bit flags aren't set, then we just wait
+ ; until we can acquire the lock using atomic operations
+ ; or, optionally, a futex call (usually more efficient).
+
+ ; Atomically check whether the lock is owned by another thread,
+ ; and if not, try to take ownership by writing our TID to [rdi].
+ ; if ([rdi] == 0) { [rdi] = edx; goto acquire_success; } else { eax = [rdi]; }
+ xor eax, eax
+ lock cmpxchg [rdi], edx
+ jz acquire_success ; case 1
+
+ ; The lock isn't free, so let's check how "clean" its state is.
+ ; The following flags are set by the kernel (see futex below):
+ ; - FUTEX_OWNER_DIED: the lock's owner died, so it's actually free
+ ; (but first the kernel needs to clean up)
+ ; - FUTEX_WAITERS: we aren't the only one waiting for this lock
+ ; (so let's sleep until the kernel wakes us up)
+ ; Either way, we need the kernel's help, so jump to the futex call.
+ test eax, (FUTEX_OWNER_DIED | FUTEX_WAITERS)
+ jnz acquire_futex ; case 2
+
+ ; It seems someone has the lock, check who: it may already be us.
+ ; If so, this is a recursive acquisition, good, let's continue.
+ and eax, FUTEX_TID_MASK
+ cmp eax, edx
+ je acquire_success ; case 3
+
+ ; Someone else has the lock, but we're the only one waiting for it.
+ ; System calls are expensive, so let's try a short spin loop first,
+ ; hoping it'll get released soon. This is arguably unnecessary, as
+ ; it's only beneficial when two threads are more or less "in sync",
+ ; so in most real-world cases you can delete this with no downside.
+
+ ; Loop counter
+ mov ecx, 10
+ acquire_spinloop:
+ ; The "pause" instruction is specially designed for loops like this
+ ; and conserves power. It causes a small delay (makes sense here).
+ pause
+
+ ; Atomically check whether the lock is owned by another thread,
+ ; and if not, try to take ownership by writing our TID to [rdi].
+ ; if ([rdi] == 0) { [rdi] = edx; goto acquire_success; } else { eax = [rdi]; }
+ xor eax, eax
+ lock cmpxchg [rdi], edx
+ jz acquire_success
+
+ ; Decrement loop counter until zero
+ dec ecx
+ jnz acquire_spinloop
+
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ ;;;; Let the kernel handle it ;;;;
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+ acquire_futex:
+ ; The futex system call waits for the dword at an address (rdi)
+ ; changes in a certain way, as described above and in the futex
+ ; manual's section on so-called "priority-inheritance futexes".
+ ; See: man 2 futex
+
+ ; futex: rdi = uaddr: address of the dword to watch
+ ; futex: rsi = futex_op: which futex operation we want:
+ ; - FUTEX_LOCK_PI: block until lock's owner uses FUTEX_UNLOCK_PI
+ ; - FUTEX_PRIVATE_FLAG: this lock isn't shared with another process
+ mov esi, (FUTEX_LOCK_PI | FUTEX_PRIVATE_FLAG)
+ ; futex: r10 = timeout: in case we had a deadline (we don't)
+ xor r10, r10
+ ; futex: rdx = val: ignored when FUTEX_LOCK_PI is used
+ ; futex: r8 = uaddr2: ignored when FUTEX_LOCK_PI is used
+ ; futex: r9 = val3: ignored when FUTEX_LOCK_PI is used
+ ; futex: rax = system call ID
+ mov eax, SYS_FUTEX
+ ; futex: rax = futex(rdi, rsi, (rdx), r10, (r8), (r9))
+ syscall
+
+ ; Sometimes the lock is released after the "lock cmpxchg" instruction
+ ; but just before the futex call. In that case, futex returns EAGAIN.
+ cmp rax, -11 ; (-EAGAIN)
+ je acquire_futex
+
+ ; Any other negative return value means failure
+ test rax, rax
+ jnz acquire_return
+
+ ; Indicate that we made a futex call (see below for why)
+ xor edx, edx
+
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ ;;;; Update the recursion counter ;;;;
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+ acquire_success:
+ ; Read the recursion counter (we have the lock: no need for atomics)
+ mov ecx, [rdi + 4]
+
+ ; The value in edx depends on how we came to the acquire_success label:
+ ; 1) We jumped here after a successful "lock cmpxchg": edx has our TID
+ ; 2) We finished a successful futex call: edx was set to 0 (see above)
+ test edx, edx
+ ; Why do we care? Well, in the latter case, the futex call may have been
+ ; necessary because there was a problem (i.e. FUTEX_OWNER_DIED was set),
+ ; in which case the recursion counter is stale and hence must be reset.
+ ; In any other case, whoever released the lock should've reset it already.
+ cmovz ecx, edx ; ecx = 0
+
+ ; Increment the recursion counter and write it back to memory
+ ; (if the lock is being used non-recursively, it should be 1)
+ inc ecx
+ mov [rdi + 4], ecx
+
+ ; Lock acquisition was successful, so we'll return 0. In most cases
+ ; eax is already 0; we only need this if the recursion counter > 1.
+ xor eax, eax
+
+ acquire_return:
+ ret
diff --git a/src/lock_release.asm b/src/lock_release.asm
new file mode 100644
index 0000000..f86caa2
--- /dev/null
+++ b/src/lock_release.asm
@@ -0,0 +1,132 @@
+; Under MIT license, see /LICENSE.txt
+
+
+; Cheat sheet for Linux' x86_64 calling convention:
+;
+; - free to overwrite (caller should save them):
+; rax, rcx, rdx, rsi, rdi, r8-r11, xmm0-xmm15
+; - caller expects be kept (callee should save them):
+; rbx, rbp, r12-r15
+;
+; - for passing paramters to functions:
+; rdi, rsi, rdx, rcx, r8, r9, xmm0-xmm7
+; - for getting return values from functions:
+; rax, rdx, xmm0
+;
+; - for passing parameters to syscalls:
+; rax, rdi, rsi, rdx, r10, r8, r9
+; - for getting return values from syscalls:
+; rax, rdx
+; - overwritten by syscalls (all others preserved):
+; rcx, r11
+
+
+section .text
+
+
+; Relevant system call IDs
+%define SYS_GETTID 186
+%define SYS_FUTEX 202
+
+; Relevant operations for futex
+%define FUTEX_UNLOCK_PI 7
+%define FUTEX_PRIVATE_FLAG 0x80
+
+; Relevant bits for futex dword
+%define FUTEX_TID_MASK 0x3fffffff
+%define FUTEX_OWNER_DIED 0x40000000
+%define FUTEX_WAITERS 0x80000000
+
+
+; Release an acquired lock if we're who acquired it. Argument:
+; rdi: struct{u32,u32,u32}* = handle of lock to release
+; Returns zero on success, or a standard error code.
+global linen_lock_release
+linen_lock_release:
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ ;;;; Check validity of argument ;;;;
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+ ; Return EINVAL if rdi is NULL or invalid
+ mov eax, -22 ; (EINVAL = -22)
+
+ test rdi, rdi
+ jz release_return ; rdi is NULL
+
+ ; rdi is nonzero, so let's just assume it's a valid pointer;
+ ; if that assumption is wrong we'll get a segmentation fault.
+ ; But we don't yet trust that [rdi] is a valid lock handle!
+ ; To verify this we check the canary value stored at [rdi + 8].
+ mov ecx, [rdi + 8]
+ cmp ecx, 0xCAFEBABE
+ jnz release_return
+
+ ; Lock owners are identified by their TID; let's find ours.
+ ; The gettid system call simply returns our Linux thread ID.
+ ; See: man 2 gettid
+
+ ; gettid: rax = system call ID
+ mov eax, SYS_GETTID
+ ; gettid: rax = gettid()
+ syscall
+
+ ; Save a copy of our TID (no need for an error check)
+ mov edx, eax
+
+ ; Return EPERM if this lock currently doesn't belong to us
+ mov eax, -1 ; (EPERM = -1)
+
+ ; Read the futex dword at [rdi] and keep its lowest 30 bits
+ mov ecx, [rdi]
+ and ecx, FUTEX_TID_MASK
+ ; Those bits contain the owner's TID; it should be our TID
+ cmp ecx, edx
+ jne release_return
+
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ ;;;; (Partially) release our lock ;;;;
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+ ; Decrement the recursion counter. If it's still > 1, we're done here.
+ dec dword [rdi + 4]
+ jnz release_success
+ ; If it reaches 0, it's time for a full release by setting [rdi] to 0.
+
+ ; Restore our saved TID to eax for "lock cmpxchg" below
+ mov eax, edx
+
+ ; Atomically try to set the dword at [rdi] to 0 if it was equal to our TID.
+ ; if ([rdi] == eax]) { [rdi] = 0; goto release_success; } else { eax = [rdi]; }
+ xor ecx, ecx
+ lock cmpxchg [rdi], ecx
+ je release_success
+
+ ; We failed because [rdi] wasn't equal to our TID. In theory,
+ ; that can mean only one thing: [rdi] = (edx | FUTEX_WAITERS).
+ ; In that case we need to ask the kernel to wake up the threads
+ ; who are waiting (via a futex system call) for [rdi] to change.
+ ; See: man 2 futex
+
+ ; futex: rdi = uaddr: address of the dword to announce for
+ ; futex: rsi = futex_op: which futex operation we want:
+ ; - FUTEX_UNLOCK_PI: wake up one thread sleeping via FUTEX_LOCK_PI
+ ; - FUTEX_PRIVATE_FLAG: this lock isn't shared with another process
+ mov esi, (FUTEX_UNLOCK_PI | FUTEX_PRIVATE_FLAG) ; futex: futex_op
+ ; futex: rdx = val: ignored when FUTEX_UNLOCK_PI is used
+ ; futex: r10 = timeout: ignored when FUTEX_UNLOCK_PI is used
+ ; futex: r8 = uaddr2: ignored when FUTEX_UNLOCK_PI is used
+ ; futex: r9 = val3: ignored when FUTEX_UNLOCK_PI is used
+ ; futex: rax = system call ID
+ mov eax, SYS_FUTEX
+ ; futex: rax = futex(rdi, rsi, (rdx), (r10), (r8), (r9))
+ syscall
+
+ ; Check result of futex: nonzero means failure
+ test rax, rax
+ jnz release_return
+
+ release_success:
+ xor eax, eax
+
+ release_return:
+ ret
diff --git a/src/thread_create.asm b/src/thread_create.asm
new file mode 100644
index 0000000..9a6fe78
--- /dev/null
+++ b/src/thread_create.asm
@@ -0,0 +1,264 @@
+; Under MIT license, see /LICENSE.txt
+
+
+; Cheat sheet for Linux' x86_64 calling convention:
+;
+; - free to overwrite (caller should save them):
+; rax, rcx, rdx, rsi, rdi, r8-r11, xmm0-xmm15
+; - caller expects be kept (callee should save them):
+; rbx, rbp, r12-r15
+;
+; - for passing paramters to functions:
+; rdi, rsi, rdx, rcx, r8, r9, xmm0-xmm7
+; - for getting return values from functions:
+; rax, rdx, xmm0
+;
+; - for passing parameters to syscalls:
+; rax, rdi, rsi, rdx, r10, r8, r9
+; - for getting return values from syscalls:
+; rax, rdx
+; - overwritten by syscalls (all others preserved):
+; rcx, r11
+
+
+section .text
+
+
+; Relevant system call IDs
+%define SYS_MMAP 9
+%define SYS_MPROTECT 10
+%define SYS_CLONE 56
+%define SYS_EXIT 60
+
+; Relevant flags for mmap
+%define MAP_SHARED 0x00001
+%define MAP_PRIVATE 0x00002
+%define MAP_ANONYMOUS 0x00020
+;%define MAP_GROWSDOWN 0x00100 ; Insecure, segfaults anyway
+%define MAP_LOCKED 0x02000
+%define MAP_POPULATE 0x08000
+%define MAP_STACK 0x20000
+
+; Relevant flags for mprotect
+%define PROT_READ 0x1
+%define PROT_WRITE 0x2
+
+; Relevant flags for clone
+%define CLONE_VM 0x00000100
+%define CLONE_FS 0x00000200
+%define CLONE_FILES 0x00000400
+%define CLONE_SIGHAND 0x00000800
+%define CLONE_PARENT 0x00008000
+%define CLONE_THREAD 0x00010000
+%define CLONE_SYSVSEM 0x00040000
+%define CLONE_SETTLS 0x00080000
+%define CLONE_PARENT_SETTID 0x00100000
+%define CLONE_CHILD_CLEARTID 0x00200000
+%define CLONE_CHILD_SETTID 0x01000000
+%define CLONE_IO 0x80000000
+
+
+%define STACK_SIZE 2097152 ; 2 MiB stack
+%define GUARD_PAGE 4096 ; 4 KiB guard page
+
+
+; Create a new thread executing a given function. Arguments:
+; rdi: struct{u32,u32}** = where to put the thread handle
+; rsi: void* (*)(void*) = function to make the child run
+; rdx: void* = single argument for function
+; Returns zero on success, or a standard error code.
+global linen_thread_create
+linen_thread_create:
+ ; Callee-save registers
+ push rbx
+
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ ;;;; Check validity of arguments ;;;;
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+ ; Return EINVAL if any argument is NULL
+ mov eax, -22 ; (EINVAL = -22)
+ test rdi, rdi
+ jz create_return ; Nowhere to store the thread handle
+ test rsi, rsi
+ jz create_return ; No function for the thread to run
+
+ ; Note: we allow rdx to be NULL; in that case the worst that can happen
+ ; is a segmentation fault in the user's code (not really our problem).
+
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ ;;;; Allocate a stack and guard page ;;;;
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+ ; Save these registers: we'll clobber them for the mmap call
+ mov rbx, rdi
+ push rdx
+ push rsi
+
+ ; The mmap system call does many things, in this case allocate memory.
+ ; See: man 2 mmap
+
+ ; mmap: rdi = addr: address for mapping; 0 lets kernel choose
+ xor edi, edi
+ ; mmap: rsi = length: size of buffer to allocate
+ mov esi, (STACK_SIZE + GUARD_PAGE)
+ ; mmap: rdx = prot: mprotect-style access permissions
+ mov edx, (PROT_WRITE | PROT_READ)
+ ; mmap: r10 = flags: configuration flags for mapping:
+ ; - MAP_ANONYMOUS: there is no file backing this buffer
+ ; - MAP_PRIVATE: only this process can see thread's stack
+ ; - MAP_STACK: no-op; inform kernel that this is a stack
+ mov r10, (MAP_ANONYMOUS | MAP_PRIVATE | MAP_STACK)
+ ; mmap: r8 = fd: ignored for MAP_ANONYMOUS, recommended -1
+ mov r8, -1
+ ; mmap: r9 = offset: should be 0 when MAP_ANONYMOUS is used
+ xor r9, r9
+ ; mmap: rax = system call ID
+ mov eax, SYS_MMAP
+ ; mmap: rax = mmap(rdi, rsi, rdx, r10, r8, 9)
+ syscall
+
+ ; Pop these now before we start branching. Those registers
+ ; won't be used by the next system calls, so they're safe.
+ pop r8 ; function
+ pop r9 ; argument
+
+ ; Check result of mmap: negative means failure,
+ ; otherwise rax is the address of the new mapping.
+ test rax, rax
+ js create_return
+
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ ;;;; Revoke guard page's R/W permissions ;;;;
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+ ; Keep in mind that stacks grow downward, so the guard page is at
+ ; the lowest address of the newly-allocated buffer, i.e. at [rax].
+
+ ; The mprotect system call changes the permissions of a memory region.
+ ; See: man 2 mprotect
+
+ ; mprotect: rdi = addr: lower address of region to control
+ mov rdi, rax
+ ; mprotect: rsi = len: size of region, one page in this case
+ mov esi, GUARD_PAGE
+ ; mprotect: rdx = prot: access permissions; zero for none
+ xor edx, edx
+ ; mprotect: rax = system call ID
+ mov eax, SYS_MPROTECT
+ ; mprotect: rax = mprotect(rdi, rsi, rdx)
+ syscall
+
+ ; Check result of mprotect: nonzero means failure
+ test rax, rax
+ jnz create_return
+
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ ;;;; Spawn a thread with the new stack ;;;;
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+ ; The clone system call spawns a new thread, cloned from a parent.
+ ; Both threads end up running the same code, i.e. it returns "twice",
+ ; once in the parent (0 if success) and once in the child (the TID).
+ ; See: man 2 clone
+
+ ; clone: rsi = stack
+ ; Currently rdi points to the lowest byte of the stack area.
+ ; Again, stacks grow downward, so we calculate the address of
+ ; the top qword to use as the child thread's starting point.
+ lea rsi, [rdi + (STACK_SIZE + GUARD_PAGE - 8)]
+
+ ; clone: rdi = flags: settings for cloned thread
+ ; These flags make the parent and child share resources:
+ ; - CLONE_VM: memory address space
+ ; - CLONE_FS: filesystem information, e.g. working directory
+ ; - CLONE_FILES: file descriptor table
+ ; - CLONE_IO: I/O scheduler context
+ ; - CLONE_SIGHAND: signal handlers
+ ; - CLONE_PARENT: parent process (implied by CLONE_THREAD?)
+ ; - CLONE_THREAD: shared PID, distinguish by TID instead (I think?)
+ ; These flags are relevant for a threading API:
+ ; - CLONE_CHILD_SETTID: store child's TID at supplied address (in r10)
+ ; - CLONE_CHILD_CLEARTID: set stored TID to zero when child finishes
+ ; (this will be used for joining threads)
+ mov edi, (CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_IO \
+ | CLONE_SIGHAND | CLONE_PARENT | CLONE_THREAD \
+ | CLONE_CHILD_SETTID | CLONE_CHILD_CLEARTID)
+
+ ; clone: rdx = parent_tid: ignored unless CLONE_PARENT_SETTID is used
+
+ ; clone: r10 = child_tid: address to store new thread's TID
+ ; We use "bottom" of stack (rsi), i.e. where child will start.
+ mov r10, rsi
+
+ ; clone: r8 = tls: ignored unless CLONE_SETTLS is used
+
+ ; clone: rax = system call ID
+ mov eax, SYS_CLONE
+ ; clone: rax = clone(rdi, rsi, (rdx), r10, (r8));
+ syscall
+
+ ; Ideally, both parent and new-born child are executing this code now.
+
+ ; Check result of clone:
+ test rax, rax
+ js create_return ; Negative means failure
+ jnz create_success ; Positive means we're in the parent thread
+ ; Zero means we're in the child thread
+
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ ;;;; Initialization in child thread ;;;;
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+ ; Best practice is to clear the frame pointer
+ xor ebp, ebp
+
+ ; Move argument into place and call supplied function
+ mov rdi, r9
+ call r8
+
+ ; Once done, leave function's return value lying around
+ push rax
+
+ ; Exit the thread with return value 0
+ xor edi, edi
+ mov rax, SYS_EXIT
+ syscall ; (never returns)
+
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ ;;;; Clean up in parent thread ;;;;
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+ create_success:
+ ; We use the highest dword of the child's stack buffer as a futex
+ ; to detect when it has finished (see CLONE_CHILD_CLEARTID above).
+ ; That dword's address also acts as a thread handle for our API,
+ ; so we store it at the address the caller supplied (now in rbx).
+ mov [rbx], rsi
+
+ ; We place a canary value in the unused dword at the top:
+ ; checking this value tells us if a thread handle is valid.
+ mov dword [rsi + 4], 0xDEADBEEF
+
+ ; "Sketch" of child's stack buffer's layout:
+ ;
+ ; (bottom of range allocated by mmap)
+ ; 4 KiB: guard page, unused
+ ; (bottom of usable buffer)
+ ; ...
+ ; ... Child is currently doing work here ...
+ ; ...
+ ; qword: return address of function called by child (from r8)
+ ; dword: futex to detect when child has returned (address: rsi)
+ ; dword: canary value to know if handle is valid (address: rsi + 4)
+ ; (top of range allocated by mmap = top of usable buffer)
+
+ ; Return 0 for success
+ xor eax, eax
+
+ create_return:
+ ; Restore callee-save registers
+ pop rbx
+
+ ret
+
diff --git a/src/thread_finish.asm b/src/thread_finish.asm
new file mode 100644
index 0000000..860b0a4
--- /dev/null
+++ b/src/thread_finish.asm
@@ -0,0 +1,147 @@
+; Under MIT license, see /LICENSE.txt
+
+
+; Cheat sheet for Linux' x86_64 calling convention:
+;
+; - free to overwrite (caller should save them):
+; rax, rcx, rdx, rsi, rdi, r8-r11, xmm0-xmm15
+; - caller expects be kept (callee should save them):
+; rbx, rbp, r12-r15
+;
+; - for passing paramters to functions:
+; rdi, rsi, rdx, rcx, r8, r9, xmm0-xmm7
+; - for getting return values from functions:
+; rax, rdx, xmm0
+;
+; - for passing parameters to syscalls:
+; rax, rdi, rsi, rdx, r10, r8, r9
+; - for getting return values from syscalls:
+; rax, rdx
+; - overwritten by syscalls (all others preserved):
+; rcx, r11
+
+
+section .text
+
+
+; Relevant system call IDs
+%define SYS_MUNMAP 11
+%define SYS_FUTEX 202
+
+; Relevant operations for futex
+%define FUTEX_WAIT 0
+%define FUTEX_PRIVATE_FLAG 0x80
+
+
+%define STACK_SIZE 2097152 ; 2 MiB stack
+%define GUARD_PAGE 4096 ; 4 KiB guard page
+
+
+; Wait for thread to exit, save its return value, and clean up. Arguments:
+; rdi: struct{u32,u32}* = handle of the thread to wait for
+; rsi: void** = where to put void* returned by thread
+; Returns zero on success, or a standard error code.
+global linen_thread_finish
+linen_thread_finish:
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ ;;;; Check validity of arguments ;;;;
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+ ; Return EINVAL if rdi is NULL or otherwise invalid
+ mov eax, -22 ; (EINVAL = -22)
+
+ test rdi, rdi
+ jz finish_return ; rdi is NULL
+
+ ; rdi is nonzero, so let's just assume it's a valid pointer;
+ ; if that assumption is wrong we'll get a segmentation fault.
+ ; But we don't yet trust that [rdi] is a valid thread handle!
+ ; To verify this we check the canary value stored at [rdi + 4].
+ mov ecx, [rdi + 4]
+ cmp ecx, 0xDEADBEEF
+ jnz finish_return
+
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ ;;;; Wait until thread is finished ;;;;
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+ ; We'll clobber rsi if we need to set up a futex call
+ mov r8, rsi
+
+ finish_retry:
+ ; When spawning, we set CLONE_CHILD_SETTID and CLONE_CHILD_CLEARTID:
+ ; [rdi] contains the child thread's TID, and will get automatically
+ ; cleared (to 0) when the child exits; this is what we'll watch for.
+
+ ; Atomically check whether the target thread is still running.
+ ; if ([rdi] == 0) { goto finish_success; } else { eax = [rdi]; }
+ xor eax, eax
+ lock cmpxchg [rdi], eax
+ jz finish_success
+
+ ; The thread is still busy, so block until it's done.
+ ; The futex system call waits until the dword at an
+ ; address (rdi) deviates from an expected value (eax).
+ ; See: man 2 futex
+
+ ; futex: rdi = uaddr: address of the dword to watch
+ ; futex: rsi = futex_op: which futex operation we want:
+ ; - FUTEX_WAIT: block until the value at [rdi] changes
+ ; - FUTEX_PRIVATE_FLAG: FIXME waits forever, I don't understand why
+ mov esi, FUTEX_WAIT
+ ; futex: rdx = val: the expected value at [rdi] before it changes
+ mov edx, eax
+ ; futex: r10 = timeout: in case we had a deadline (we don't)
+ xor r10, r10
+ ; futex: r8 = uaddr2: ignored when FUTEX_WAIT is used
+ ; futex: r9 = val3: ignored when FUTEX_WAIT is used
+ ; futex: rax = system call ID
+ mov eax, SYS_FUTEX
+ ; futex: rax = futex(rdi, rsi, rdx, r10, (r8), (r9))
+ syscall
+
+ ; Sometimes the thread exits after the "lock cmpxchg" instruction
+ ; but before the futex call. In that case, futex returns EAGAIN.
+ cmp rax, -11 ; (EAGAIN = -11)
+ je finish_retry
+
+ ; Any other nonzero return value means failure
+ test rax, rax
+ jnz finish_return
+
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+ ;;;; Clean up after thread's exit ;;;;
+ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
+
+ finish_success:
+ ; The thread left its function return value on the stack, read it
+ mov rdx, [rdi - 8]
+
+ ; The munmap system call destroys mappings created by mmap.
+ ; In this case that means deallocating the stack buffer.
+ ; See: man 2 munmap
+
+ ; munmap: rdi = addr: lowest address of region to unmap
+ ; Our rdi is near the buffer's top, so we must subtract
+ sub rdi, (STACK_SIZE + GUARD_PAGE - 8)
+ ; munmap: rsi = length: size of region starting from rdi
+ mov esi, (STACK_SIZE + GUARD_PAGE)
+ ; munmap: rax = system call ID
+ mov eax, SYS_MUNMAP
+ ; munmap: rax = munmap(rdi, rsi)
+ syscall
+
+ ; Check result of munmap: nonzero means failure
+ test rax, rax
+ jnz finish_return
+
+ ; Check if caller gave a location (r8) to save the return value (rdx)
+ test r8, r8
+ jz finish_return ; caller doesn't care: gave NULL pointer
+ mov [r8], rdx
+ ; Note: if munmap failed, the buffer is still there, so we
+ ; can safely return an error without losing the return value.
+
+ finish_return:
+ ret
+