diff options
author | Prefetch | 2021-11-21 18:02:35 +0100 |
---|---|---|
committer | Prefetch | 2021-11-21 18:02:35 +0100 |
commit | 6505b1fb3399ec4bff97aabda2554764bf305d0f (patch) | |
tree | eccdbd828a383a989d8cbc6e166a22a38a7085dc | |
parent | dc3498fd50121eadbdd3ddac5bf950a16e2b50cb (diff) |
Expand knowledge base
-rw-r--r-- | content/know/concept/feynman-diagram/index.pdc | 4 | ||||
-rw-r--r-- | content/know/concept/imaginary-time/index.pdc | 20 | ||||
-rw-r--r-- | content/know/concept/self-energy/dyson.png | bin | 0 -> 14164 bytes | |||
-rw-r--r-- | content/know/concept/self-energy/fullgf.png | bin | 0 -> 16504 bytes | |||
-rw-r--r-- | content/know/concept/self-energy/index.pdc | 311 | ||||
-rw-r--r-- | content/know/concept/self-energy/selfenergy.png | bin | 0 -> 36654 bytes | |||
-rw-r--r-- | sources/know/concept/self-energy/main.tex | 171 |
7 files changed, 499 insertions, 7 deletions
diff --git a/content/know/concept/feynman-diagram/index.pdc b/content/know/concept/feynman-diagram/index.pdc index eee6bf3..dfb63c1 100644 --- a/content/know/concept/feynman-diagram/index.pdc +++ b/content/know/concept/feynman-diagram/index.pdc @@ -1,7 +1,7 @@ --- title: "Feynman diagram" firstLetter: "F" -publishDate: 2021-11-15 +publishDate: 2021-11-18 categories: - Physics - Quantum mechanics @@ -105,7 +105,7 @@ are instead represented by a special vertex: <img src="perturbation.png" style="width:35%;display:block;margin:auto;"> </a> $$\begin{aligned} - = \frac{1}{i \hbar} V_I(\vb{r}, t, \sigma) + = \frac{1}{i \hbar} V_s(\vb{r}, t) \end{aligned}$$ Other graphical components exist representing diff --git a/content/know/concept/imaginary-time/index.pdc b/content/know/concept/imaginary-time/index.pdc index 55f163a..b68afce 100644 --- a/content/know/concept/imaginary-time/index.pdc +++ b/content/know/concept/imaginary-time/index.pdc @@ -145,20 +145,30 @@ $$\begin{aligned} \hat{A}_I(\tau) \hat{K}_I(\tau, \tau') \hat{B}_I(\tau') \hat{K}_I(\tau', 0) \!\Big) \end{aligned}$$ -Assuming $\tau > \tau'$, -we introduce a time-ordering $\mathcal{T}$, -allowing us to reorder the operators inside, +We now introduce a time-ordering $\mathcal{T}$, +letting us reorder the (bosonic) $\hat{K}_I$-operators inside, and thereby reduce the expression considerably: $$\begin{aligned} - \expval*{\hat{A}_H \hat{B}_H} + \expval{\mathcal{T}\Big\{\hat{A}_H \hat{B}_H\Big\}} &= \frac{1}{Z} \Tr\!\Big( \mathcal{T} \Big\{ \hat{K}_I(\hbar \beta, \tau) \hat{K}_I(\tau, \tau') \hat{K}_I(\tau', 0) \hat{A}_I(\tau) \hat{B}_I(\tau') \Big\} \exp\!(-\beta \hat{H}_{0,S}) \Big) \\ - &= \frac{1}{Z} \Tr\!\Big( \mathcal{T} \Big\{ \hat{K}_I(\hbar \beta, 0) \hat{A}_I(\tau) \hat{B}_I(\tau') \Big\} \exp\!(-\beta \hat{H}_{0,S}) \Big) + &= \frac{1}{Z} \Tr\!\Big( \mathcal{T}\Big\{ \hat{K}_I(\hbar \beta, 0) \hat{A}_I(\tau) \hat{B}_I(\tau') \Big\} \exp\!(-\beta \hat{H}_{0,S}) \Big) \end{aligned}$$ Where $Z = \Tr\!\big(\exp\!(-\beta \hat{H}_S)\big) = \Tr\!\big(\hat{K}_I(\hbar \beta, 0) \exp\!(-\beta \hat{H}_{0,S})\big)$. +If we now define $\expval{}_0$ as the expectation value with respect +to the unperturbed equilibrium involving only $\hat{H}_{0,S}$, +we arrive at the following way of writing this time-ordered expectation: + +$$\begin{aligned} + \boxed{ + \expval{\mathcal{T}\Big\{\hat{A}_H \hat{B}_H\Big\}} + = \frac{\expval{\mathcal{T}\Big\{ \hat{K}_I(\hbar \beta, 0) \hat{A}_I(\tau) \hat{B}_I(\tau') \Big\}}_0}{\expval{\hat{K}_I(\hbar \beta, 0)}_0} + } +\end{aligned}$$ + For another application of imaginary time, see e.g. the [Matsubara Green's function](/know/concept/matsubara-greens-function/). diff --git a/content/know/concept/self-energy/dyson.png b/content/know/concept/self-energy/dyson.png Binary files differnew file mode 100644 index 0000000..efa7a63 --- /dev/null +++ b/content/know/concept/self-energy/dyson.png diff --git a/content/know/concept/self-energy/fullgf.png b/content/know/concept/self-energy/fullgf.png Binary files differnew file mode 100644 index 0000000..3c88c6a --- /dev/null +++ b/content/know/concept/self-energy/fullgf.png diff --git a/content/know/concept/self-energy/index.pdc b/content/know/concept/self-energy/index.pdc new file mode 100644 index 0000000..d2908eb --- /dev/null +++ b/content/know/concept/self-energy/index.pdc @@ -0,0 +1,311 @@ +--- +title: "Self-energy" +firstLetter: "S" +publishDate: 2021-11-21 +categories: +- Physics +- Quantum mechanics + +date: 2021-11-15T21:02:02+01:00 +draft: false +markup: pandoc +--- + +# Self-energy + +Suppose we have a time-independent Hamiltonian $\hat{H} = \hat{H}_0 + \hat{W}$, +consisting of a simple $\hat{H}_0$ and a difficult interaction $\hat{W}$, +for example describing Coulomb repulsion between electrons. + +The concept of [imaginary time](/know/concept/imaginary-time/) +exists to handle such difficult time-independent Hamiltonians +at nonzero temperatures. Therefore, we know that the +[Matsubara Green's function](/know/concept/matsubara-greens-function/) +$G$ can be written as follows, where $\mathcal{T}$ is the +[time-ordered product](/know/concept/time-ordered-product/), +and $\beta = 1 / (k_B T)$: + +$$\begin{aligned} + G_{s_b s_a}(\vb{r}_b, \tau_b; \vb{r}_a, \tau_a) + = - \frac{\expval{\mathcal{T}\Big\{ \hat{K}(\hbar \beta, 0) \hat{\Psi}_{s_b}(\vb{r}_b, \tau_b) \hat{\Psi}_{s_a}^\dagger(\vb{r}_a, \tau_a) \Big\}}} + {\hbar \expval{\hat{K}(\hbar \beta, 0)}} +\end{aligned}$$ + +Where we know that the time evolution operator $\hat{K}$ +is as follows in the [interaction picture](/know/concept/interaction-picture/): + +$$\begin{aligned} + \hat{K}(\tau_2, \tau_1) + &= \mathcal{T}\bigg\{ \exp\!\bigg( \!-\!\frac{1}{\hbar} \int_{\tau_1}^{\tau_2} \hat{W}(\tau) \dd{\tau} \bigg) \bigg\} + \\ + &= \sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\!\frac{1}{\hbar} \Big)^n + \mathcal{T}\bigg\{ \bigg( \int_{\tau_1}^{\tau_2} \hat{W}(\tau) \dd{\tau} \bigg)^n \bigg\} +\end{aligned}$$ + +Where $\hat{W}$ is the two-body operator in the interaction picture. +We insert this into the full Green's function above, +and abbreviate +$G_{ba} \equiv G_{s_b s_a}(\vb{r}_b, \tau_b; \vb{r}_a, \tau_a)$ +and $\hat{\Psi}_a \equiv \hat{\Psi}_{s_a}(\vb{r}_a, \tau_a)$: + +$$\begin{aligned} + G_{ba} + %&= - \frac{\expval{\mathcal{T}\Big\{ \hat{K}(\hbar \beta, 0) \hat{\Psi}_b \hat{\Psi}_a^\dagger \Big\}}}{\expval{\hat{K}(\hbar \beta, 0)}} + %\\ + &= - \frac{\displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\!\frac{1}{\hbar} \Big)^n \idotsint_0^{\hbar \beta} + \expval{\mathcal{T}\Big\{ \hat{W}(\tau_1) \cdots \hat{W}(\tau_n) \hat{\Psi}_b \hat{\Psi}_a^\dagger \Big\}} \dd{\tau_1} \cdots \dd{\tau_n}} + {\hbar \displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\!\frac{1}{\hbar} \Big)^n \idotsint_0^{\hbar \beta} + \expval{\mathcal{T}\Big\{ \hat{W}(\tau_1) \cdots \hat{W}(\tau_n) \Big\}} \dd{\tau_1} \cdots \dd{\tau_n}} +\end{aligned}$$ + +Next, we write out the interaction operator $\hat{W}$ +in the [second quantization](/know/concept/second-quantization/), +assuming there is no spin-flipping, +and that $W(\vb{r}_1, \vb{r}_2) = W(\vb{r}_2, \vb{r}_1)$ +(hence $1/2$ to avoid double-counting): + +$$\begin{aligned} + \hat{W}(\tau_1) + &= \frac{1}{2} \sum_{s_1 s_2} \iint_{-\infty}^\infty \hat{\Psi}_{s_1}^\dagger(\vb{r}_1, \tau_1) \hat{\Psi}_{s_2}^\dagger(\vb{r}_2, \tau_1) + W(\vb{r}_1, \vb{r}_2) \hat{\Psi}_{s_2}(\vb{r}_2, \tau_1) \hat{\Psi}_{s_1}(\vb{r}_1, \tau_1) \dd{\vb{r}_1} \dd{\vb{r}_2} +\end{aligned}$$ + +We integrate this over $\tau_1$ and over a dummy $\tau_2$. +Defining $W_{j'j} \equiv W(\vb{r}_j', \vb{r}_j) \: \delta(\tau_1 \!-\! \tau_2)$ we get: + +$$\begin{aligned} + \int_0^{\hbar \beta} \hat{W}(\tau_1) \dd{\tau_1} + &= \frac{1}{2} \iint \hat{\Psi}_{s_1}^\dagger(\vb{r}_1, \tau_1) \hat{\Psi}_{s_2}^\dagger(\vb{r}_2, \tau_2) + \: W_{1,2} \: \hat{\Psi}_{s_2}(\vb{r}_2, \tau_2) \hat{\Psi}_{s_1}(\vb{r}_1, \tau_1) \dd{\tau_2} \dd{\vb{r}_1} \dd{\vb{r}_2} + \\ + &= \frac{1}{2} \iint \hat{\Psi}_1^\dagger \hat{\Psi}_2^\dagger W_{1,2} \hat{\Psi}_2 \hat{\Psi}_1 \dd{1} \dd{2} +\end{aligned}$$ + +Where we have further abbreviated $\int \dd{j} \equiv \sum_{s_j} \int \dd{\vb{r}_j} \int \dd{\tau_j}$. +The full $G_{ba}$ thus becomes: + +$$\begin{aligned} + G_{ba} + &= - \frac{\displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{1}{2 \hbar} \Big)^n (-\hbar)^{2n+1} + \idotsint W_{1'1} \cdots W_{n'n} \: \Big( G^0_\mathrm{num} \Big) \dd{1'} \dd{1} \cdots \dd{n'} \dd{n}} + {\hbar \displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{1}{2 \hbar} \Big)^n (-\hbar)^{2n} + \idotsint W_{1'1} \cdots W_{n'n} \: \Big( G^0_\mathrm{den} \Big) \dd{1'} \dd{1} \cdots \dd{n'} \dd{n}} +\end{aligned}$$ + +Where we have realized that both the numerator and denominator +contain many-particle non-interacting Green's functions, defined as: + +$$\begin{aligned} + G^0_\mathrm{num}(b1'1 \cdots n'n; a1'1 \cdots n'n) + &= \Big( \!-\!\frac{1}{\hbar} \Big)^{2 n + 1} + \expval{\mathcal{T}\Big\{ \hat{\Psi}_{1'}^\dagger \hat{\Psi}_{1}^\dagger \hat{\Psi}_{1} \hat{\Psi}_{1'} \cdots + \hat{\Psi}_{n'}^\dagger \hat{\Psi}_{n}^\dagger \hat{\Psi}_{n} \hat{\Psi}_{n'} \hat{\Psi}_b \hat{\Psi}_a^\dagger \Big\}} + \\ + G^0_\mathrm{den}(1'1 \cdots n'n; 1'1 \cdots n'n) + &= \Big( \!-\!\frac{1}{\hbar} \Big)^{2 n} + \expval{\mathcal{T}\Big\{ \hat{\Psi}_{1'}^\dagger \hat{\Psi}_{1}^\dagger \hat{\Psi}_{1} \hat{\Psi}_{1'} \cdots + \hat{\Psi}_{n'}^\dagger \hat{\Psi}_{n}^\dagger \hat{\Psi}_{n} \hat{\Psi}_{n'} \Big\}} +\end{aligned}$$ + +By applying [Wick's theorem](/know/concept/wicks-theorem/), +we can rewrite these as a sum of products of single-particle Green's functions, +so for instance $G^0_\mathrm{num}(b1'1 \cdots n'n; a1'1 \cdots n'n)$ becomes: + +$$\begin{aligned} + G^0_\mathrm{num}(b1'1 \cdots n'n; a1'1 \cdots n'n) + = \mathrm{det} \begin{bmatrix} + G^0_{ba} & G^0_{b1'} & G^0_{b1} & G^0_{b2'} & \cdots & G^0_{bn'} & G^0_{bn} \\ + G^0_{1'a} & G^0_{1'1'} & G^0_{1'1} & G^0_{1'2'} & \cdots & G^0_{1'n'} & G^0_{1'n} \\ + \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ + G^0_{n'a} & G^0_{n'1'} & G^0_{n'1} & G^0_{n'2'} & \cdots & G^0_{n'n'} & G^0_{n'n} \\ + G^0_{na} & G^0_{n1'} & G^0_{n1} & G^0_{n2'} & \cdots & G^0_{nn'} & G^0_{nn} + \end{bmatrix} +\end{aligned}$$ + +And analogously for $G^0_\mathrm{den}$. +If we are studying bosons instead of fermions, +the above determinant would need to be replaced by a *permanent*. +We assume fermions from now on. + +We thus have sums over all permutations $p$ +of products of single-particle Green's function, +times $(-1)^p$ to account for swaps of fermionic operators: + +$$\begin{aligned} + G_{ba} + &= \frac{\displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{\hbar}{2} \Big)^n + \idotsint W_{1'1} \cdots W_{n'n} \: \Big( \sum_{p} (-1)^p \prod_{m = 1}^{2 n + 1} G^0_{(p,m)} \Big) \dd{1}' \dd{1} \cdots \dd{n'} \dd{n}} + {\displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{\hbar}{2} \Big)^n + \idotsint W_{1'1} \cdots W_{n'n} \: \Big( \sum_{p} (-1)^p \prod_{m = 1}^{2 n} G^0_{(p,m)} \Big) \dd{1'} \dd{1} \cdots \dd{n'} \dd{n}} +\end{aligned}$$ + +These integrals over products of interactions and Green's functions +are the perfect place to apply [Feynman diagrams](/know/concept/feynman-diagram/). +Conveniently, it even turns out that the factor $(-1)^p$ +is exactly equivalent to the rule that each diagram is multiplied by $(-1)^F$, +with $F$ the number of fermion loops. + +The denominator thus turns into a sum of all possible diagrams for each total order $n$ +(the order of a diagram is the number of interaction lines it contains). +The endpoints $a$ and $b$ do not appear here, +so we conclude that all those diagrams only have internal vertices; +we will therefore refer to them as **internal diagrams**. + +And in the numerator, we sum over all diagrams of total order $n$ +containing the external vertices $a$ and $b$. +Some of them are **connected**, +so all vertices (including $a$ and $b$) are in the same graph, +but most are **disconnected**. +Because disconnected diagrams have no shared lines or vertices to integrate over, +they can simply be factored into separate diagrams. + +If it contains $a$ and $b$, we call it an **external diagram**, +and then clearly all disconnected parts must be internal diagrams +($a$ and $b$ are always connected, +since they are the only vertices with just one fermion line; +all internal vertices must have two). +We thus find: + +$$\begin{aligned} + G_{ba} + &= \frac{\displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{\hbar}{2} \Big)^n + \bigg[ \sum_\mathrm{all\;ext}^{n} \binom{1 \: \mathrm{external}}{\mathrm{order} \; m \!\le\! n} + \binom{\mathrm{0\;or\;more\;internal}}{\mathrm{total\;order} \; (n \!-\! m)} \bigg]} + {\displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{\hbar}{2} \Big)^n + \binom{\mathrm{0\;or\;more\;internal}}{\mathrm{total\;order} \; n}} +\end{aligned}$$ + +Where the total order refers to the sum of the orders of all disconnected diagrams. +Note that the external diagram does not directly depend on $n$. +We can therefore reorganize: + +$$\begin{aligned} + G_{ba} + &= \frac{\displaystyle\sum_\mathrm{all\;ext}^{\infty} \binom{1 \: \mathrm{external}}{\mathrm{order} \; m} + \bigg[ \sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{\hbar}{2} \Big)^n + \binom{\mathrm{0\;or\;more\;internal}}{\mathrm{total\;order} \; (n \!-\! m)} \bigg]} + {\displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{\hbar}{2} \Big)^n + \binom{\mathrm{0\;or\;more\;internal}}{\mathrm{total\;order} \; n}} +\end{aligned}$$ + +Since both $n$ and $m$ start at zero, +and the sums include all possible diagrams, +we see that the second sum in the numerator does not actually depend on $m$: + +$$\begin{aligned} + G_{ba} + &= \frac{\displaystyle\sum_\mathrm{all\;ext} \binom{1 \: \mathrm{external}}{\mathrm{order} \; m} + \bigg[ \sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{\hbar}{2} \Big)^n + \binom{\mathrm{0\;or\;more\;internal}}{\mathrm{total\;order} \; n} \bigg]} + {\displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{\hbar}{2} \Big)^n + \binom{\mathrm{0\;or\;more\;internal}}{\mathrm{total\;order} \; n}} + \\ + &= \sum_\mathrm{all\;ext} \binom{1 \: \mathrm{external}}{\mathrm{order} \; m} +\end{aligned}$$ + +In other words, all the disconnected diagrams simply cancel out, +and we are left with a sum over all possible fully connected diagrams +that contain $a$ and $b$. Let $G(b,a) = G_{ba}$: + +<a href="fullgf.png"> +<img src="fullgf.png" style="width:90%;display:block;margin:auto;"> +</a> + +A **reducible diagram** is a Feynman diagram +that can be cut in two valid diagrams +by removing just one fermion line, +while an **irreducible diagram** cannot be split like that. + +At last, we define the **self-energy** $\Sigma(y,x)$ +as the sum of all irreducible terms in $G(b,a)$, +after removing the two external lines from/to $a$ and $b$: + +<a href="selfenergy.png"> +<img src="selfenergy.png" style="width:90%;display:block;margin:auto;"> +</a> + +Despite its appearance, the self-energy has the semantics of a line, +so it has two endpoints over which to integrate if necessary. + +By construction, by reattaching $G^0(x,a)$ and $G^0(b,y)$ to the self-energy, +we get all irreducible diagrams, +and by connecting multiple irreducible diagrams with single fermion lines, +we get all fully connected diagrams containing the endpoints $a$ and $b$. + +In other words, the full $G(b,a)$ is constructed +by taking the unperturbed $G^0(b,a)$ +and inserting one or more irreducible diagrams between $a$ and $b$. +We can equally well insert a single irreducible diagram +as a sequence of connected irreducible diagrams. +Thanks to this recursive structure, +you can convince youself that $G(b,a)$ obeys +a [Dyson equation](/know/concept/dyson-equation/) involving $\Sigma(y, x)$: + +<a href="dyson.png"> +<img src="dyson.png" style="width:90%;display:block;margin:auto;"> +</a> + +This makes sense: in the "normal" Dyson equation +we have a one-body perturbation instead of $\Sigma$, +while $\Sigma$ represents a two-body effect +as an infinite sum of one-body diagrams. +Interpreting this diagrammatic Dyson equation yields: + +$$\begin{aligned} + \boxed{ + G(b, a) + = G^0(b, a) + \iint G^0(b, y) \: \Sigma(y, x) \: G(x, a) \dd{x} \dd{y} + } +\end{aligned}$$ + +Keep in mind that $\int \dd{x} \equiv \sum_{s_x} \int \dd{\vb{r}_x} \int \dd{\tau_x}$. +In the special case of a system with continuous translational symmetry +and no spin dependence, this simplifies to: + +$$\begin{aligned} + \boxed{ + G_{s}(\tilde{\vb{k}}) + = G_{s}^0(\tilde{\vb{k}}) + G_{s}^0(\tilde{\vb{k}}) \: \Sigma_{s}(\tilde{\vb{k}}) \: G_{s}(\tilde{\vb{k}}) + } +\end{aligned}$$ + +Where $\tilde{\vb{k}} \equiv (\vb{k}, i \omega_n)$, +with $\omega_n$ being a fermionic Matsubara frequency. +Note that conservation of spin, $\vb{k}$ and $\omega_n$, +together with the linear structure of the Dyson equation, +makes $\Sigma$ diagonal in all of those quantities. +Isolating for $G$: + +$$\begin{aligned} + G_{s}(\tilde{\vb{k}}) + = \frac{G_{s}^0(\tilde{\vb{k}})}{1 - G_{s}^0(\tilde{\vb{k}}) \: \Sigma_{s}(\tilde{\vb{k}})} + = \frac{1}{1 / G_{s}^0(\tilde{\vb{k}}) - \Sigma_{s}(\tilde{\vb{k}})} +\end{aligned}$$ + +From [equation-of-motion theory](/know/concept/equation-of-motion-theory/), +we already know an expression for $G$ in diagonal $\vb{k}$-space: + +$$\begin{aligned} + G_s^0(\vb{k}, i \omega_n) + = \frac{1}{i \hbar \omega_n - \varepsilon_\vb{k}} + \quad \implies \quad + G_{s}(\vb{k}, i \omega_n) + = \frac{1}{i \hbar \omega_n - \varepsilon_\vb{k} - \Sigma_{s}(\vb{k}, i \omega_n)} +\end{aligned}$$ + +The self-energy thus corrects the non-interacting energies for interactions. +It can therefore be regarded as the energy +a particle has due to changes it has caused in its environment. + +Unfortunately, in practice, $\Sigma$ is rarely as simple as +in the translationally-invariant example above; +in fact, it does not even need to be Hermitian, +i.e. $\Sigma(y,x) \neq \Sigma^*(x,y)$, +in which case it resists the standard techniques for analysis. + + + +## References +1. H. Bruus, K. Flensberg, + *Many-body quantum theory in condensed matter physics*, + 2016, Oxford. diff --git a/content/know/concept/self-energy/selfenergy.png b/content/know/concept/self-energy/selfenergy.png Binary files differnew file mode 100644 index 0000000..8eaffff --- /dev/null +++ b/content/know/concept/self-energy/selfenergy.png diff --git a/sources/know/concept/self-energy/main.tex b/sources/know/concept/self-energy/main.tex new file mode 100644 index 0000000..114b433 --- /dev/null +++ b/sources/know/concept/self-energy/main.tex @@ -0,0 +1,171 @@ +\documentclass[11pt]{article} +\usepackage[utf8]{inputenc} +\usepackage{amsmath} +\usepackage{amsfonts} +\usepackage{physics} + +\usepackage{feynmp} +\DeclareGraphicsRule{*}{mps}{*}{} + +\begin{document} + +\begin{center} + {\Huge \sc Feynman diagrams} +\end{center} + +\noindent +Full Green's function +\begin{align} + G(b,a) +&= \quad +\begin{fmffile}{0order1} + \begin{fmfgraph*}(30,20) + \fmfipair{i,o} + \fmfiequ{i}{(0w,0.3h)} + \fmfiequ{o}{(1w,0.3h)} + \fmfi{fermion}{i -- o} + \fmfiv{decor.shape=circle,decor.size=4,label=$a$,label.angle=-90}{i} + \fmfiv{decor.shape=circle,decor.size=4,label=$b$,label.angle=-90}{o} + \end{fmfgraph*} +\end{fmffile} +\quad + \quad +\begin{fmffile}{1order1} + \begin{fmfgraph*}(50,20) + \fmfipair{i,m,t,t',o} + \fmfiequ{i}{(0w,0.3h)} + \fmfiequ{m}{(0.5w,0.3h)} + \fmfiequ{t}{(0.5w,0.9h)} + \fmfiequ{t'}{(0.5w,1.3h)} + \fmfiequ{o}{(1w,0.3h)} + \fmfi{fermion}{i -- m} + \fmfi{boson}{m -- t} + \fmfi{plain}{t{left} .. {right}t'} + \fmfi{plain}{t'{right} .. {left}t} + \fmfi{fermion}{m -- o} + \fmfiv{decor.shape=circle,decor.size=4,label=$a$,label.angle=-90}{i} + \fmfiv{decor.shape=circle,decor.size=4}{m} + \fmfiv{decor.shape=circle,decor.size=4}{t} + \fmfiv{decor.shape=circle,decor.size=4,label=$b$,label.angle=-90}{o} + \end{fmfgraph*} +\end{fmffile} +\quad + \quad +\begin{fmffile}{1order2} + \begin{fmfgraph*}(70,20) + \fmfipair{i,a,b,o} + \fmfiequ{i}{(0w,0.3h)} + \fmfiequ{a}{(0.33w,0.3h)} + \fmfiequ{b}{(0.67w,0.3h)} + \fmfiequ{o}{(1w,0.3h)} + \fmfi{fermion}{i -- a} + \fmfi{boson}{a -- b} + \fmfi{fermion}{a{up} .. {down}b} + \fmfi{fermion}{b -- o} + \fmfiv{decor.shape=circle,decor.size=4,label=$a$,label.angle=-90}{i} + \fmfiv{decor.shape=circle,decor.size=4}{a} + \fmfiv{decor.shape=circle,decor.size=4}{b} + \fmfiv{decor.shape=circle,decor.size=4,label=$b$,label.angle=-90}{o} + \end{fmfgraph*} +\end{fmffile} +\quad + \:\: \cdots +\end{align} +Self-energy definition +\begin{align} +\Sigma(y,x) +=\!\!\!\! +\begin{fmffile}{selfenergy} + \begin{fmfgraph*}(20,20) + \fmfright{v} + \fmfv{label=$x\!\!\to\!\!y$,label.angle=-90,label.dist=10}{v} + \fmfblob{15}{v} + \end{fmfgraph*} +\end{fmffile} +&\quad\: \equiv \:\:\:\: +\begin{fmffile}{hartree} + \begin{fmfgraph*}(25,20) + \fmfleft{i} + \fmfright{o} + \fmf{boson}{i,o} + \fmf{fermion}{o,o} + \fmfv{label=$\:\:x\!\!=\!\!y$,label.angle=-90}{i} + \fmfdot{i} + \fmfdot{o} + \end{fmfgraph*} +\end{fmffile} +\qquad + \:\:\: +\begin{fmffile}{fock} + \begin{fmfgraph*}(40,20) + \fmfipair{i,o} + \fmfiequ{i}{(0,0.3h)} + \fmfiequ{o}{(w,0.3h)} + \fmfi{boson}{i -- o} + \fmfi{fermion}{i{up} .. tension 1.5 .. {down}o} + \fmfiv{decor.shape=circle,decor.size=4,label=$x$,label.angle=-90,label.dist=5}{i} + \fmfiv{decor.shape=circle,decor.size=4,label=$y$,label.angle=-90,label.dist=5}{o} + \end{fmfgraph*} +\end{fmffile} +\:\:\: + \:\:\: +\begin{fmffile}{pairbubble} + \begin{fmfgraph*}(40,20) + \fmfipair{i,a,b,o} + \fmfiequ{i}{(0,0h)} + \fmfiequ{a}{(0,1h)} + \fmfiequ{b}{(1w,1h)} + \fmfiequ{o}{(1w,0h)} + \fmfi{fermion}{i -- o} + \fmfi{boson}{i -- a} + \fmfi{boson}{b -- o} + \fmfi{fermion}{a{up} .. tension 2.5 .. {down}b} + \fmfi{fermion}{b{down} .. tension 2.5 .. {up}a} + \fmfiv{decor.shape=circle,decor.size=4,label=$x$,label.angle=-90,label.dist=5}{i} + \fmfiv{decor.shape=circle,decor.size=4,label.angle=-90,label.dist=3}{a} + \fmfiv{decor.shape=circle,decor.size=4,label.angle=-90,label.dist=3}{b} + \fmfiv{decor.shape=circle,decor.size=4,label=$y$,label.angle=-90,label.dist=5}{o} + \end{fmfgraph*} +\end{fmffile} +\:\:\: + \: \cdots +\end{align} +Dyson equation +\begin{align} +G(b,a) += \quad +\begin{fmffile}{fullgf} + \begin{fmfgraph*}(50,20) + \fmfleft{i} + \fmfright{o} + \fmf{heavy}{i,o} + \fmfv{label=$a$,label.angle=-90}{i} + \fmfv{label=$b$,label.angle=-90}{o} + \fmfdot{i} + \fmfdot{o} + \end{fmfgraph*} +\end{fmffile} +\quad = \quad +\begin{fmffile}{freegf} + \begin{fmfgraph*}(50,20) + \fmfleft{i} + \fmfright{o} + \fmf{fermion}{i,o} + \fmfv{label=$a$,label.angle=-90}{i} + \fmfv{label=$b$,label.angle=-90}{o} + \fmfdot{i} + \fmfdot{o} + \end{fmfgraph*} +\end{fmffile} +\quad + \quad +\begin{fmffile}{dyson} + \begin{fmfgraph*}(110,20) + \fmfleft{i} + \fmfright{o} + \fmf{fermion}{i,v} + \fmf{heavy}{v,o} + \fmfv{label=$a$,label.angle=-90}{i} + \fmfv{label=$b$,label.angle=-90}{o} + \fmfdot{i} + \fmfdot{o} + \fmfv{label=$x\!\to\!y$,label.angle=-90,label.dist=10}{v} + \fmfblob{15}{v} + \end{fmfgraph*} +\end{fmffile} +\end{align} + +\end{document} |