diff options
author | Prefetch | 2022-01-08 14:09:13 +0100 |
---|---|---|
committer | Prefetch | 2022-01-08 14:13:44 +0100 |
commit | 7c2d27ca89c5b096694b950c766e50df2dc87001 (patch) | |
tree | ed9ee3c02fe746350b9e0714f4648a554ade52b0 | |
parent | 63966407338ed0bdb061ddfd67f8940c2ccb51d2 (diff) |
Minor fixes, rename "Ion Sound Wave" and "Ito Process"
-rw-r--r-- | config.toml | 3 | ||||
-rw-r--r-- | content/know/concept/electric-dipole-approximation/index.pdc | 12 | ||||
-rw-r--r-- | content/know/concept/guiding-center-theory/index.pdc | 2 | ||||
-rw-r--r-- | content/know/concept/hellmann-feynman-theorem/index.pdc | 2 | ||||
-rw-r--r-- | content/know/concept/ion-sound-wave/index.pdc (renamed from content/know/concept/ion-sound-waves/index.pdc) | 4 | ||||
-rw-r--r-- | content/know/concept/ito-process/index.pdc (renamed from content/know/concept/ito-calculus/index.pdc) | 6 | ||||
-rw-r--r-- | content/know/concept/langmuir-waves/index.pdc | 8 | ||||
-rw-r--r-- | content/know/concept/magnetohydrodynamics/index.pdc | 4 | ||||
-rw-r--r-- | content/know/concept/time-dependent-perturbation-theory/index.pdc | 6 |
9 files changed, 25 insertions, 22 deletions
diff --git a/config.toml b/config.toml index d5a8d6d..3463bda 100644 --- a/config.toml +++ b/config.toml @@ -3,3 +3,6 @@ languageCode = "en-us" title = "Prefetch" disableKinds = ["taxonomy", "term"] + +[security.exec] +allow = ['^dart-sass-embedded$', '^go$', '^npx$', '^postcss$', '^pandoc$'] diff --git a/content/know/concept/electric-dipole-approximation/index.pdc b/content/know/concept/electric-dipole-approximation/index.pdc index 96b4fed..265babf 100644 --- a/content/know/concept/electric-dipole-approximation/index.pdc +++ b/content/know/concept/electric-dipole-approximation/index.pdc @@ -46,7 +46,7 @@ In an electromagnetic wave, $\vec{A}$ is oscillating sinusoidally in time and space as follows: $$\begin{aligned} - \vec{A}(\vec{r}, t) = \vec{A}_0 \exp\!(i \vec{k} \cdot \vec{r} - i \omega t) + \vec{A}(\vec{r}, t) = - i \vec{A}_0 \exp\!(i \vec{k} \cdot \vec{r} - i \omega t) \end{aligned}$$ The corresponding perturbative @@ -59,7 +59,7 @@ $$\begin{aligned} = \vec{E}_0 \exp\!(i \vec{k} \cdot \vec{r} - i \omega t) \end{aligned}$$ -Where $\vec{E}_0 = i \omega \vec{A}_0$. +Where $\vec{E}_0 = \omega \vec{A}_0$. Let us restrict ourselves to visible light, whose wavelength $2 \pi / k \approx 10^{-6} \:\mathrm{m}$. Meanwhile, an atomic orbital is on the order of $10^{-10} \:\mathrm{m}$, @@ -82,7 +82,7 @@ and the electron quantum-mechanically. Next, we want to convert $\hat{H}_1$ to use the electric field $\vec{E}$ instead of the potential $\vec{A}$. To do so, we rewrite the momemtum $\vec{P} = m \: \dv*{\vec{r}}{t}$ -and evaluate this in the [Heisenberg picture](/know/concept/heisenberg-picture/): +and evaluate this in the [interaction picture](/know/concept/interaction-picture/): $$\begin{aligned} \matrixel{2}{\dv*{\vec{r}}{t}}{1} @@ -95,15 +95,15 @@ $$\begin{aligned} Therefore, $\vec{P} / m = i \omega_0 \vec{r}$, where $\omega_0 \equiv (E_2 - E_1) / \hbar$ is the resonance frequency of the transition, -close to which we assume that $\vec{A}$ and $\vec{E}$ are oscillating. +close to which we assume that $\vec{A}$ and $\vec{E}$ are oscillating, i.e. $\omega \approx \omega_0$. We thus get: $$\begin{aligned} \hat{H}_1(t) &= - \frac{q}{m} \vec{P} \cdot \vec{A} - = - i q \omega_0 \vec{r} \cdot \vec{A}_0 \exp\!(- i \omega t) + = - (- i i) q \omega_0 \vec{r} \cdot \vec{A}_0 \exp\!(- i \omega t) \\ - &= - q \vec{r} \cdot \vec{E}_0 \exp\!(- i \omega t) + &\approx - q \vec{r} \cdot \vec{E}_0 \exp\!(- i \omega t) = - \vec{d} \cdot \vec{E}_0 \exp\!(- i \omega t) \end{aligned}$$ diff --git a/content/know/concept/guiding-center-theory/index.pdc b/content/know/concept/guiding-center-theory/index.pdc index 12abac0..dee10ba 100644 --- a/content/know/concept/guiding-center-theory/index.pdc +++ b/content/know/concept/guiding-center-theory/index.pdc @@ -174,7 +174,7 @@ $$\begin{aligned} m \dv{\vb{u}_{gc}}{t} = q \big( \vb{E} + \vb{u}_{gc} \cross \vb{B} + \vb{u}_{gc} \cross (\vb{x}_L \cdot \nabla) \vb{B} - + + \vb{u}_L \cross (\vb{x}_L \cdot \nabla) \vb{B} \big) + + \vb{u}_L \cross (\vb{x}_L \cdot \nabla) \vb{B} \big) \end{aligned}$$ We approximate this by taking the average over a single gyration, diff --git a/content/know/concept/hellmann-feynman-theorem/index.pdc b/content/know/concept/hellmann-feynman-theorem/index.pdc index 3b88cd8..1d2fe82 100644 --- a/content/know/concept/hellmann-feynman-theorem/index.pdc +++ b/content/know/concept/hellmann-feynman-theorem/index.pdc @@ -74,7 +74,7 @@ to minimize energies with respect to $\lambda$: $$\begin{aligned} \boxed{ \nabla_\lambda E_n - = \matrixel{\psi_m}{\nabla_\lambda \hat{H}}{\psi_n} + = \matrixel{\psi_n}{\nabla_\lambda \hat{H}}{\psi_n} } \end{aligned}$$ diff --git a/content/know/concept/ion-sound-waves/index.pdc b/content/know/concept/ion-sound-wave/index.pdc index c56188b..5cba1d0 100644 --- a/content/know/concept/ion-sound-waves/index.pdc +++ b/content/know/concept/ion-sound-wave/index.pdc @@ -1,5 +1,5 @@ --- -title: "Ion sound waves" +title: "Ion sound wave" firstLetter: "I" publishDate: 2021-10-31 categories: @@ -11,7 +11,7 @@ draft: false markup: pandoc --- -# Ion sound waves +# Ion sound wave In a plasma, electromagnetic interactions allow compressional longitudinal waves to propagate diff --git a/content/know/concept/ito-calculus/index.pdc b/content/know/concept/ito-process/index.pdc index 3d4dd67..d27a2fb 100644 --- a/content/know/concept/ito-calculus/index.pdc +++ b/content/know/concept/ito-process/index.pdc @@ -1,5 +1,5 @@ --- -title: "Itō calculus" +title: "Itō process" firstLetter: "I" publishDate: 2021-11-06 categories: @@ -11,7 +11,7 @@ draft: false markup: pandoc --- -# Itō calculus +# Itō process Given two [stochastic processes](/know/concept/stochastic-process/) $F_t$ and $G_t$, consider the following random variable $X_t$, @@ -197,7 +197,7 @@ This is done by defining $Y_t \equiv h(X_t)$, with $h(x)$ given by: $$\begin{aligned} \boxed{ h(x) - = \int_{x_0}^x \exp\!\bigg( \!-\!\! \int_{x_1}^x \frac{2 f(y)}{g^2(y)} \dd{y} \bigg) + = \int_{x_0}^x \exp\!\bigg( \!-\!\! \int_{x_1}^y \frac{2 f(z)}{g^2(z)} \dd{z} \bigg) \dd{y} } \end{aligned}$$ diff --git a/content/know/concept/langmuir-waves/index.pdc b/content/know/concept/langmuir-waves/index.pdc index cd9b449..3c3f1d2 100644 --- a/content/know/concept/langmuir-waves/index.pdc +++ b/content/know/concept/langmuir-waves/index.pdc @@ -34,7 +34,7 @@ We also need [Gauss' law](/know/concept/maxwells-equations/): $$\begin{aligned} \varepsilon_0 \nabla \cdot \vb{E} - = q_e (n_i - n_e) + = q_e (n_e - n_i) \end{aligned}$$ We split $n_e$, $\vb{u}_e$ and $\vb{E}$ into a base component @@ -85,10 +85,10 @@ and use the plasma's quasi-neutrality $n_i = n_{e0}$ to get: $$\begin{aligned} \varepsilon_0 \nabla \cdot \big( \vb{E}_0 \!+\! \vb{E}_1 \big) - = q_e (n_i - n_{e0} \!-\! n_{e1} ) + = q_e (n_{e0} + n_{e1} - n_i) \quad \implies \quad \varepsilon_0 \nabla \cdot \vb{E}_1 - = - q_e n_{e1} + = q_e n_{e1} \end{aligned}$$ Since we are looking for linear waves, @@ -110,7 +110,7 @@ Inserting this into the continuity equation and Gauss' law yields, respectively: $$\begin{aligned} - i \omega n_{e1} = - i n_{e0} \vb{k} \cdot \vb{u}_{e1} \qquad \quad - i \varepsilon_0 \vb{k} \cdot \vb{E}_1 = q_e n_{e1} + -\! i \varepsilon_0 \vb{k} \cdot \vb{E}_1 = q_e n_{e1} \end{aligned}$$ However, there are three unknowns $n_{e1}$, $\vb{u}_{e1}$ and $\vb{E}_1$, diff --git a/content/know/concept/magnetohydrodynamics/index.pdc b/content/know/concept/magnetohydrodynamics/index.pdc index 6672a74..89d23db 100644 --- a/content/know/concept/magnetohydrodynamics/index.pdc +++ b/content/know/concept/magnetohydrodynamics/index.pdc @@ -333,7 +333,7 @@ This term can be dropped in any of the following cases: $$\begin{gathered} 1 - \gg \frac{\big| \vb{J} \cross \vb{B} / q_e n_e \big|}{\big| \vb{U} \cross \vb{B} \big|} + \gg \frac{\big| \vb{J} \cross \vb{B} / q_e n_e \big|}{\big| \vb{u} \cross \vb{B} \big|} \sim \frac{\rho v_\mathrm{char} / \tau_\mathrm{char}}{v_\mathrm{char} |\vb{B}| q_i n_i} \approx \frac{m_i n_i}{|\vb{B}| q_i n_i \tau_\mathrm{char}} = \frac{1}{\omega_{ci} \tau_\mathrm{char}} @@ -366,7 +366,7 @@ where we have used Ampère's law to find $\vb{J} \sim \vb{B} / \mu_0 \lambda_\ma $$\begin{aligned} 1 - \ll \frac{\big| \vb{U} \cross \vb{B} \big|}{\big| \eta \vb{J} \big|} + \ll \frac{\big| \vb{u} \cross \vb{B} \big|}{\big| \eta \vb{J} \big|} \sim \frac{v_\mathrm{char} |\vb{B}|}{\eta \vb{J}} \sim \frac{v_\mathrm{char} |\vb{B}|}{\eta |\vb{B}| / \mu_0 \lambda_\mathrm{char}} = \mathrm{R_m} diff --git a/content/know/concept/time-dependent-perturbation-theory/index.pdc b/content/know/concept/time-dependent-perturbation-theory/index.pdc index 1fbd9ce..76ab684 100644 --- a/content/know/concept/time-dependent-perturbation-theory/index.pdc +++ b/content/know/concept/time-dependent-perturbation-theory/index.pdc @@ -59,13 +59,13 @@ We then take the inner product with an arbitrary stationary basis state $\ket{m} $$\begin{aligned} 0 - &= \sum_{n} \Big( \lambda c_n \matrixel{m}{\hat{H}_1}{n} - i \hbar \frac{d c_n}{dt} \braket{m}{n} \Big) \exp\!(- i E_n t / \hbar) + &= \sum_{n} \Big( \lambda c_n \matrixel{m}{\hat{H}_1}{n} - i \hbar \dv{c_n}{t} \braket{m}{n} \Big) \exp\!(- i E_n t / \hbar) \end{aligned}$$ Thanks to orthonormality, this removes the latter term from the summation: $$\begin{aligned} - i \hbar \frac{d c_m}{dt} \exp\!(- i E_m t / \hbar) + i \hbar \dv{c_m}{t} \exp\!(- i E_m t / \hbar) &= \lambda \sum_{n} c_n \matrixel{m}{\hat{H}_1}{n} \exp\!(- i E_n t / \hbar) \end{aligned}$$ @@ -74,7 +74,7 @@ $\omega_{mn} \equiv (E_m - E_n) / \hbar$ to get: $$\begin{aligned} \boxed{ - i \hbar \frac{d c_m}{dt} + i \hbar \dv{c_m}{t} = \lambda \sum_{n} c_n(t) \matrixel{m}{\hat{H}_1(t)}{n} \exp\!(i \omega_{mn} t) } \end{aligned}$$ |