summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorPrefetch2022-01-08 14:09:13 +0100
committerPrefetch2022-01-08 14:13:44 +0100
commit7c2d27ca89c5b096694b950c766e50df2dc87001 (patch)
treeed9ee3c02fe746350b9e0714f4648a554ade52b0
parent63966407338ed0bdb061ddfd67f8940c2ccb51d2 (diff)
Minor fixes, rename "Ion Sound Wave" and "Ito Process"
-rw-r--r--config.toml3
-rw-r--r--content/know/concept/electric-dipole-approximation/index.pdc12
-rw-r--r--content/know/concept/guiding-center-theory/index.pdc2
-rw-r--r--content/know/concept/hellmann-feynman-theorem/index.pdc2
-rw-r--r--content/know/concept/ion-sound-wave/index.pdc (renamed from content/know/concept/ion-sound-waves/index.pdc)4
-rw-r--r--content/know/concept/ito-process/index.pdc (renamed from content/know/concept/ito-calculus/index.pdc)6
-rw-r--r--content/know/concept/langmuir-waves/index.pdc8
-rw-r--r--content/know/concept/magnetohydrodynamics/index.pdc4
-rw-r--r--content/know/concept/time-dependent-perturbation-theory/index.pdc6
9 files changed, 25 insertions, 22 deletions
diff --git a/config.toml b/config.toml
index d5a8d6d..3463bda 100644
--- a/config.toml
+++ b/config.toml
@@ -3,3 +3,6 @@ languageCode = "en-us"
title = "Prefetch"
disableKinds = ["taxonomy", "term"]
+
+[security.exec]
+allow = ['^dart-sass-embedded$', '^go$', '^npx$', '^postcss$', '^pandoc$']
diff --git a/content/know/concept/electric-dipole-approximation/index.pdc b/content/know/concept/electric-dipole-approximation/index.pdc
index 96b4fed..265babf 100644
--- a/content/know/concept/electric-dipole-approximation/index.pdc
+++ b/content/know/concept/electric-dipole-approximation/index.pdc
@@ -46,7 +46,7 @@ In an electromagnetic wave,
$\vec{A}$ is oscillating sinusoidally in time and space as follows:
$$\begin{aligned}
- \vec{A}(\vec{r}, t) = \vec{A}_0 \exp\!(i \vec{k} \cdot \vec{r} - i \omega t)
+ \vec{A}(\vec{r}, t) = - i \vec{A}_0 \exp\!(i \vec{k} \cdot \vec{r} - i \omega t)
\end{aligned}$$
The corresponding perturbative
@@ -59,7 +59,7 @@ $$\begin{aligned}
= \vec{E}_0 \exp\!(i \vec{k} \cdot \vec{r} - i \omega t)
\end{aligned}$$
-Where $\vec{E}_0 = i \omega \vec{A}_0$.
+Where $\vec{E}_0 = \omega \vec{A}_0$.
Let us restrict ourselves to visible light,
whose wavelength $2 \pi / k \approx 10^{-6} \:\mathrm{m}$.
Meanwhile, an atomic orbital is on the order of $10^{-10} \:\mathrm{m}$,
@@ -82,7 +82,7 @@ and the electron quantum-mechanically.
Next, we want to convert $\hat{H}_1$
to use the electric field $\vec{E}$ instead of the potential $\vec{A}$.
To do so, we rewrite the momemtum $\vec{P} = m \: \dv*{\vec{r}}{t}$
-and evaluate this in the [Heisenberg picture](/know/concept/heisenberg-picture/):
+and evaluate this in the [interaction picture](/know/concept/interaction-picture/):
$$\begin{aligned}
\matrixel{2}{\dv*{\vec{r}}{t}}{1}
@@ -95,15 +95,15 @@ $$\begin{aligned}
Therefore, $\vec{P} / m = i \omega_0 \vec{r}$,
where $\omega_0 \equiv (E_2 - E_1) / \hbar$ is the resonance frequency of the transition,
-close to which we assume that $\vec{A}$ and $\vec{E}$ are oscillating.
+close to which we assume that $\vec{A}$ and $\vec{E}$ are oscillating, i.e. $\omega \approx \omega_0$.
We thus get:
$$\begin{aligned}
\hat{H}_1(t)
&= - \frac{q}{m} \vec{P} \cdot \vec{A}
- = - i q \omega_0 \vec{r} \cdot \vec{A}_0 \exp\!(- i \omega t)
+ = - (- i i) q \omega_0 \vec{r} \cdot \vec{A}_0 \exp\!(- i \omega t)
\\
- &= - q \vec{r} \cdot \vec{E}_0 \exp\!(- i \omega t)
+ &\approx - q \vec{r} \cdot \vec{E}_0 \exp\!(- i \omega t)
= - \vec{d} \cdot \vec{E}_0 \exp\!(- i \omega t)
\end{aligned}$$
diff --git a/content/know/concept/guiding-center-theory/index.pdc b/content/know/concept/guiding-center-theory/index.pdc
index 12abac0..dee10ba 100644
--- a/content/know/concept/guiding-center-theory/index.pdc
+++ b/content/know/concept/guiding-center-theory/index.pdc
@@ -174,7 +174,7 @@ $$\begin{aligned}
m \dv{\vb{u}_{gc}}{t}
= q \big( \vb{E} + \vb{u}_{gc} \cross \vb{B}
+ \vb{u}_{gc} \cross (\vb{x}_L \cdot \nabla) \vb{B}
- + + \vb{u}_L \cross (\vb{x}_L \cdot \nabla) \vb{B} \big)
+ + \vb{u}_L \cross (\vb{x}_L \cdot \nabla) \vb{B} \big)
\end{aligned}$$
We approximate this by taking the average over a single gyration,
diff --git a/content/know/concept/hellmann-feynman-theorem/index.pdc b/content/know/concept/hellmann-feynman-theorem/index.pdc
index 3b88cd8..1d2fe82 100644
--- a/content/know/concept/hellmann-feynman-theorem/index.pdc
+++ b/content/know/concept/hellmann-feynman-theorem/index.pdc
@@ -74,7 +74,7 @@ to minimize energies with respect to $\lambda$:
$$\begin{aligned}
\boxed{
\nabla_\lambda E_n
- = \matrixel{\psi_m}{\nabla_\lambda \hat{H}}{\psi_n}
+ = \matrixel{\psi_n}{\nabla_\lambda \hat{H}}{\psi_n}
}
\end{aligned}$$
diff --git a/content/know/concept/ion-sound-waves/index.pdc b/content/know/concept/ion-sound-wave/index.pdc
index c56188b..5cba1d0 100644
--- a/content/know/concept/ion-sound-waves/index.pdc
+++ b/content/know/concept/ion-sound-wave/index.pdc
@@ -1,5 +1,5 @@
---
-title: "Ion sound waves"
+title: "Ion sound wave"
firstLetter: "I"
publishDate: 2021-10-31
categories:
@@ -11,7 +11,7 @@ draft: false
markup: pandoc
---
-# Ion sound waves
+# Ion sound wave
In a plasma, electromagnetic interactions allow
compressional longitudinal waves to propagate
diff --git a/content/know/concept/ito-calculus/index.pdc b/content/know/concept/ito-process/index.pdc
index 3d4dd67..d27a2fb 100644
--- a/content/know/concept/ito-calculus/index.pdc
+++ b/content/know/concept/ito-process/index.pdc
@@ -1,5 +1,5 @@
---
-title: "Itō calculus"
+title: "Itō process"
firstLetter: "I"
publishDate: 2021-11-06
categories:
@@ -11,7 +11,7 @@ draft: false
markup: pandoc
---
-# Itō calculus
+# Itō process
Given two [stochastic processes](/know/concept/stochastic-process/)
$F_t$ and $G_t$, consider the following random variable $X_t$,
@@ -197,7 +197,7 @@ This is done by defining $Y_t \equiv h(X_t)$, with $h(x)$ given by:
$$\begin{aligned}
\boxed{
h(x)
- = \int_{x_0}^x \exp\!\bigg( \!-\!\! \int_{x_1}^x \frac{2 f(y)}{g^2(y)} \dd{y} \bigg)
+ = \int_{x_0}^x \exp\!\bigg( \!-\!\! \int_{x_1}^y \frac{2 f(z)}{g^2(z)} \dd{z} \bigg) \dd{y}
}
\end{aligned}$$
diff --git a/content/know/concept/langmuir-waves/index.pdc b/content/know/concept/langmuir-waves/index.pdc
index cd9b449..3c3f1d2 100644
--- a/content/know/concept/langmuir-waves/index.pdc
+++ b/content/know/concept/langmuir-waves/index.pdc
@@ -34,7 +34,7 @@ We also need [Gauss' law](/know/concept/maxwells-equations/):
$$\begin{aligned}
\varepsilon_0 \nabla \cdot \vb{E}
- = q_e (n_i - n_e)
+ = q_e (n_e - n_i)
\end{aligned}$$
We split $n_e$, $\vb{u}_e$ and $\vb{E}$ into a base component
@@ -85,10 +85,10 @@ and use the plasma's quasi-neutrality $n_i = n_{e0}$ to get:
$$\begin{aligned}
\varepsilon_0 \nabla \cdot \big( \vb{E}_0 \!+\! \vb{E}_1 \big)
- = q_e (n_i - n_{e0} \!-\! n_{e1} )
+ = q_e (n_{e0} + n_{e1} - n_i)
\quad \implies \quad
\varepsilon_0 \nabla \cdot \vb{E}_1
- = - q_e n_{e1}
+ = q_e n_{e1}
\end{aligned}$$
Since we are looking for linear waves,
@@ -110,7 +110,7 @@ Inserting this into the continuity equation and Gauss' law yields, respectively:
$$\begin{aligned}
- i \omega n_{e1} = - i n_{e0} \vb{k} \cdot \vb{u}_{e1}
\qquad \quad
- i \varepsilon_0 \vb{k} \cdot \vb{E}_1 = q_e n_{e1}
+ -\! i \varepsilon_0 \vb{k} \cdot \vb{E}_1 = q_e n_{e1}
\end{aligned}$$
However, there are three unknowns $n_{e1}$, $\vb{u}_{e1}$ and $\vb{E}_1$,
diff --git a/content/know/concept/magnetohydrodynamics/index.pdc b/content/know/concept/magnetohydrodynamics/index.pdc
index 6672a74..89d23db 100644
--- a/content/know/concept/magnetohydrodynamics/index.pdc
+++ b/content/know/concept/magnetohydrodynamics/index.pdc
@@ -333,7 +333,7 @@ This term can be dropped in any of the following cases:
$$\begin{gathered}
1
- \gg \frac{\big| \vb{J} \cross \vb{B} / q_e n_e \big|}{\big| \vb{U} \cross \vb{B} \big|}
+ \gg \frac{\big| \vb{J} \cross \vb{B} / q_e n_e \big|}{\big| \vb{u} \cross \vb{B} \big|}
\sim \frac{\rho v_\mathrm{char} / \tau_\mathrm{char}}{v_\mathrm{char} |\vb{B}| q_i n_i}
\approx \frac{m_i n_i}{|\vb{B}| q_i n_i \tau_\mathrm{char}}
= \frac{1}{\omega_{ci} \tau_\mathrm{char}}
@@ -366,7 +366,7 @@ where we have used Ampère's law to find $\vb{J} \sim \vb{B} / \mu_0 \lambda_\ma
$$\begin{aligned}
1
- \ll \frac{\big| \vb{U} \cross \vb{B} \big|}{\big| \eta \vb{J} \big|}
+ \ll \frac{\big| \vb{u} \cross \vb{B} \big|}{\big| \eta \vb{J} \big|}
\sim \frac{v_\mathrm{char} |\vb{B}|}{\eta \vb{J}}
\sim \frac{v_\mathrm{char} |\vb{B}|}{\eta |\vb{B}| / \mu_0 \lambda_\mathrm{char}}
= \mathrm{R_m}
diff --git a/content/know/concept/time-dependent-perturbation-theory/index.pdc b/content/know/concept/time-dependent-perturbation-theory/index.pdc
index 1fbd9ce..76ab684 100644
--- a/content/know/concept/time-dependent-perturbation-theory/index.pdc
+++ b/content/know/concept/time-dependent-perturbation-theory/index.pdc
@@ -59,13 +59,13 @@ We then take the inner product with an arbitrary stationary basis state $\ket{m}
$$\begin{aligned}
0
- &= \sum_{n} \Big( \lambda c_n \matrixel{m}{\hat{H}_1}{n} - i \hbar \frac{d c_n}{dt} \braket{m}{n} \Big) \exp\!(- i E_n t / \hbar)
+ &= \sum_{n} \Big( \lambda c_n \matrixel{m}{\hat{H}_1}{n} - i \hbar \dv{c_n}{t} \braket{m}{n} \Big) \exp\!(- i E_n t / \hbar)
\end{aligned}$$
Thanks to orthonormality, this removes the latter term from the summation:
$$\begin{aligned}
- i \hbar \frac{d c_m}{dt} \exp\!(- i E_m t / \hbar)
+ i \hbar \dv{c_m}{t} \exp\!(- i E_m t / \hbar)
&= \lambda \sum_{n} c_n \matrixel{m}{\hat{H}_1}{n} \exp\!(- i E_n t / \hbar)
\end{aligned}$$
@@ -74,7 +74,7 @@ $\omega_{mn} \equiv (E_m - E_n) / \hbar$ to get:
$$\begin{aligned}
\boxed{
- i \hbar \frac{d c_m}{dt}
+ i \hbar \dv{c_m}{t}
= \lambda \sum_{n} c_n(t) \matrixel{m}{\hat{H}_1(t)}{n} \exp\!(i \omega_{mn} t)
}
\end{aligned}$$