diff options
author | Prefetch | 2022-03-07 12:07:23 +0100 |
---|---|---|
committer | Prefetch | 2022-03-07 12:07:23 +0100 |
commit | bd349aaace1deb21fa6d88719b7009b63aec542a (patch) | |
tree | a1ad75749c0c1b24d1c872795723996e4b254e93 | |
parent | 3a78748e8e4aacefbbc43fb7304fa50bbcad3864 (diff) |
Expand knowledge base
5 files changed, 444 insertions, 4 deletions
diff --git a/content/know/concept/cylindrical-parabolic-coordinates/index.pdc b/content/know/concept/cylindrical-parabolic-coordinates/index.pdc index 3460de4..e3257b5 100644 --- a/content/know/concept/cylindrical-parabolic-coordinates/index.pdc +++ b/content/know/concept/cylindrical-parabolic-coordinates/index.pdc @@ -43,7 +43,7 @@ $$\begin{aligned} \end{aligned}$$ Cylindrical parabolic coordinates form an orthogonal -[curvilinear](/know/concept/curvilinear-coordinates/) system, +[curvilinear system](/know/concept/curvilinear-coordinates/), so we would like to find its scale factors $h_\sigma$, $h_\tau$ and $h_z$. The differentials of the Cartesian coordinates are as follows: diff --git a/content/know/concept/cylindrical-polar-coordinates/index.pdc b/content/know/concept/cylindrical-polar-coordinates/index.pdc index 6242b9f..0b2acd1 100644 --- a/content/know/concept/cylindrical-polar-coordinates/index.pdc +++ b/content/know/concept/cylindrical-polar-coordinates/index.pdc @@ -47,7 +47,7 @@ $$\begin{aligned} \end{aligned}$$ The cylindrical polar coordinates form an orthogonal -[curvilinear](/know/concept/curvilinear-coordinates/) system, +[curvilinear system](/know/concept/curvilinear-coordinates/), whose scale factors $h_r$, $h_\varphi$ and $h_z$ we want to find. To do so, we calculate the differentials of the Cartesian coordinates: @@ -141,7 +141,7 @@ $$\begin{aligned} \\ &+ \vu{e}_\varphi \Big( \pdv{V_r}{z} - \pdv{V_z}{r} \Big) \\ - &+ \frac{\vu{e}_\varphi}{r} \Big( \pdv{(r V_\varphi)}{r} - \pdv{V_r}{\varphi} \Big) + &+ \frac{\vu{e}_z}{r} \Big( \pdv{(r V_\varphi)}{r} - \pdv{V_r}{\varphi} \Big) \end{aligned} } \end{aligned}$$ diff --git a/content/know/concept/grad-shafranov-equation/index.pdc b/content/know/concept/grad-shafranov-equation/index.pdc new file mode 100644 index 0000000..afd24b0 --- /dev/null +++ b/content/know/concept/grad-shafranov-equation/index.pdc @@ -0,0 +1,231 @@ +--- +title: "Grad-Shafranov equation" +firstLetter: "G" +publishDate: 2022-03-06 +categories: +- Physics +- Plasma physics + +date: 2022-01-30T19:27:07+01:00 +draft: false +markup: pandoc +--- + +# Grad-Shafranov equation + +Nuclear fusion reactors tend to have a torus shape, +in which the plasma is confined by a **pinch**, +i.e. by [magnetic fields](/know/concept/magnetic-field/) +chosen so that the [Lorentz force](/know/concept/lorentz-force/) +stops particles escaping. +Effectively, we are taking a cylindrical [screw pinch](/know/concept/screw-pinch/) +and bending it into a torus. + +We would like to find the equilibrium state of the plasma +in the general case of a reactor with toroidal symmetry. +Using ideal [magnetohydrodynamics](/know/concept/magnetohydrodynamics/) (MHD), +we start by assuming that the fluid is stationary, +and that the confining field $\vb{B}$ is fixed: + +$$\begin{aligned} + \vb{u} + = 0 + \qquad \qquad + \pdv{\vb{u}}{t} + = 0 + \qquad \qquad + \pdv{\vb{B}}{t} + = 0 + \qquad \qquad + \vb{E} + = 0 +\end{aligned}$$ + +Notice that $\vb{E} = 0$ is a result of the ideal generalized Ohm's law. +Under these assumptions, the relevant MHD equations to be solved are +Gauss' law for magnetism, Ampère's law, and the MHD momentum equation, respectively: + +$$\begin{aligned} + 0 + = \nabla \cdot \vb{B} + \qquad \qquad + \mu_0 \vb{J} + = \nabla \cross \vb{B} + \qquad \qquad + \nabla p + = \vb{J} \cross \vb{B} +\end{aligned}$$ + +The goal is to analyze them in this order, +exploiting toroidal symmetry along the way, +to arrive at a general equilibrium condition. +[Cylindrical polar coordinates](/know/concept/cylindrical-polar-coordinates/) $(r, \theta, z)$ +are a natural choice, with the $z$-axis running through the middle of the torus. + +As preparation, it is a good idea to write $\vb{B}$ +as the curl of a magnetic vector potential $\vb{A}$, +which looks like this in cylindrical polar coordinates: + +$$\begin{aligned} + \vb{B} + = \nabla \cross \vb{A} + = \begin{bmatrix} + \displaystyle \frac{1}{r} \pdv{A_z}{\theta} - \pdv{A_\theta}{z} \\ + \displaystyle \pdv{A_r}{z} - \pdv{A_z}{r} \\ + \displaystyle \frac{1}{r} \Big( \pdv{(r A_\theta)}{r} - \pdv{A_r}{\theta} \Big) + \end{bmatrix} + = \begin{bmatrix} + \displaystyle - \pdv{A_\theta}{z} \\ + \displaystyle \pdv{A_r}{z} - \pdv{A_z}{r} \\ + \displaystyle \frac{1}{r} \pdv{(r A_\theta)}{r} + \end{bmatrix} +\end{aligned}$$ + +Here, it is convenient to define the so-called **stream function** $\psi$ as follows: + +$$\begin{aligned} + \boxed{ + \psi + \equiv r A_\theta + } +\end{aligned}$$ + +Such that $\vb{B}$ can be written as below, +where we will regard $B_\theta$ as a given quantity: + +$$\begin{aligned} + \vb{B} + = \begin{bmatrix} + \displaystyle -\frac{1}{r} \pdv{\psi}{z} \\ + B_\theta \\ + \displaystyle \frac{1}{r} \pdv{\psi}{r} + \end{bmatrix} + \qquad \mathrm{where} \qquad + B_\theta + = \pdv{A_r}{z} - \pdv{A_z}{r} +\end{aligned}$$ + + +Inserting this into Gauss' law, +we see that it is trivially satisfied, +thanks to circular symmetry guaranteeing that $\pdv*{B_\theta}{\theta} = 0$: + +$$\begin{aligned} + 0 + = \nabla \cdot \vb{B} + &= - \frac{1}{r} \pdv{r} \bigg( \frac{r}{r} \pdv{\psi}{z} \bigg) + + \frac{1}{r} \pdv{B_\theta}{\theta} + + \pdv{z} \bigg( \frac{1}{r} \pdv{\psi}{r} \bigg) + \\ + &= - \frac{1}{r} \pdv{\psi}{r}{z} + \frac{1}{r} \pdv{\psi}{z}{r} + = 0 +\end{aligned}$$ + +What matters is that we have expressions for the components of $\vb{B}$. +Moving on, to find the current density $\vb{J}$, +we use Ampère's law and symmetry to get: + + +$$\begin{aligned} + \vb{J} + = \frac{1}{\mu_0} \nabla \cross \vb{B} + = \frac{1}{\mu_0} + \begin{bmatrix} + \displaystyle \frac{1}{r} \pdv{B_z}{\theta} - \pdv{B_\theta}{z} \\ + \displaystyle \pdv{B_r}{z} - \pdv{B_z}{r} \\ + \displaystyle \frac{1}{r} \Big( \pdv{(r B_\theta)}{r} - \pdv{B_r}{\theta} \Big) + \end{bmatrix} + = \frac{1}{\mu_0} + \begin{bmatrix} + \displaystyle 0 \\ + \displaystyle \pdv{B_r}{z} - \pdv{B_z}{r} \\ + \displaystyle \frac{1}{r} \pdv{(r B_\theta)}{r} + \end{bmatrix} +\end{aligned}$$ + +Where we have assumed that $B_\theta$ depends only on $r$, not $z$ or $\theta$. +Substituting this into the MHD momentum equation +gives the following pressure gradient $\nabla p$: + +$$\begin{aligned} + \nabla p + &= \vb{J} \cross \vb{B} + = \begin{bmatrix} + J_\theta B_z - J_z B_\theta \\ + J_z B_r - J_r B_z \\ + J_r B_\theta - J_\theta B_r + \end{bmatrix} + = \begin{bmatrix} + J_\theta B_z - J_z B_\theta \\ + J_z B_r \\ + - J_\theta B_r + \end{bmatrix} +\end{aligned}$$ + +Now, the idea is to focus on this $r$-component to get an equation for $\psi$, +whose solution can then be used to calculate the $\theta$ and $z$-components of $\nabla p$. +Therefore, we evaluate: + +$$\begin{aligned} + \pdv{p}{r} + &= J_\theta B_z - J_z B_\theta + \\ + &= \frac{1}{\mu_0} \bigg( \pdv{B_r}{z} - \pdv{B_z}{r} \bigg) B_z + - \frac{1}{\mu_0 r} \pdv{(r B_\theta)}{r} B_\theta + \\ + &= - \frac{1}{\mu_0} \bigg( \pdv{z}\Big(\frac{1}{r} \pdv{\psi}{z}\Big) + \pdv{r}\Big(\frac{1}{r} \pdv{\psi}{r}\Big) \bigg) \frac{1}{r} \pdv{\psi}{r} + - \frac{1}{\mu_0 r} \pdv{(r B_\theta)}{r} B_\theta + \\ + &= - \frac{1}{\mu_0 r} \bigg( \frac{1}{r} \pdv[2]{\psi}{z} + \pdv{r} \Big( \frac{1}{r} \pdv{\psi}{r} \Big) \bigg) \pdv{\psi}{r} + - \frac{1}{\mu_0 r} \pdv{(r B_\theta)}{r} B_\theta +\end{aligned}$$ + +By using the chain rule to rewrite $\pdv*{r} = (\pdv*{\psi}{r}) \; \pdv*{\psi}$, +we get $\pdv*{\psi}{r}$ in each term: + +$$\begin{aligned} + \pdv{\psi}{r} \pdv{p}{\psi} + &= - \frac{1}{\mu_0 r} \bigg( \frac{1}{r} \pdv[2]{\psi}{z} + \pdv{r} \Big( \frac{1}{r} \pdv{\psi}{r} \Big) \bigg) \pdv{\psi}{r} + - \frac{1}{\mu_0 r} \pdv{\psi}{r} \pdv{(r B_\theta)}{\psi} B_\theta +\end{aligned}$$ + +Dividing out $\pdv*{\psi}{r}$ and multiplying by $\mu_0 r^2$ +leads us to the **Grad-Shafranov equation**, +which gives the equilibrium condition of a plasma in a toroidal reactor: + +$$\begin{aligned} + \boxed{ + \pdv[2]{\psi}{z} + r \pdv{r} \bigg( \frac{1}{r} \pdv{\psi}{r} \bigg) + = - \mu_0 r^2 \pdv{p}{\psi} - r \pdv{(r B_\theta)}{\psi} B_\theta + } +\end{aligned}$$ + +Weirdly, $\psi$ appears both as an unknown and as a differentiation variable, +but this equation can still be solved analytically by +assuming a certain $\psi$-dependence of $p$ and $r B_\theta$. + +Suppose that $B_\theta$ is induced by a poloidal electrical current $I_\mathrm{pol}$, +i.e. a current around the "tube" of the torus, +then, assuming $I_\mathrm{pol}$ only depends on $r$, we have: + +$$\begin{aligned} + B_\theta + = \frac{\mu_0 I_\mathrm{pol}(r)}{2 \pi r} +\end{aligned}$$ + +Inserting this into the Grad-Shafranov equation yields its following alternative form: + +$$\begin{aligned} + \boxed{ + \pdv[2]{\psi}{z} + r \pdv{r} \bigg( \frac{1}{r} \pdv{\psi}{r} \bigg) + = - \mu_0 r^2 \pdv{p}{\psi} - \frac{\mu_0^2}{8 \pi^2} \pdv{I_\mathrm{pol}^2}{\psi} + } +\end{aligned}$$ + + + +## References +1. M. Salewski, A.H. Nielsen, + *Plasma physics: lecture notes*, + 2021, unpublished. + diff --git a/content/know/concept/screw-pinch/index.pdc b/content/know/concept/screw-pinch/index.pdc new file mode 100644 index 0000000..bb4e0b5 --- /dev/null +++ b/content/know/concept/screw-pinch/index.pdc @@ -0,0 +1,209 @@ +--- +title: "Screw pinch" +firstLetter: "S" +publishDate: 2022-03-06 +categories: +- Physics +- Plasma physics + +date: 2022-01-30T19:27:25+01:00 +draft: false +markup: pandoc +--- + +# Screw pinch + +A **pinch** is a type of plasma confinement, +which relies on [magnetic fields](/know/concept/magnetic-field/) +to squeeze the plasma into the desired area. +Examples include tokamaks and stellarators, +although the term *pinch* is typically introduced for simpler 1D confinement. + +Suppose that we want to pinch a plasma into a cylindrical shape. +The general way of doing this is called a **screw pinch**. +For simplicity, let the cylinder be infinitely long, +so that it is natural to work in +[cylindrical polar coordinates](/know/concept/cylindrical-polar-coordinates/) +$(r, \theta, z)$. + +Using the framework of ideal [magnetohydrodynamics](/know/concept/magnetohydrodynamics/) (MHD), +let us start by assuming that the fluid is stationary, +and that the confining field $\vb{B}$ is fixed. +From the (ideal) generalized Ohm's law, it then follows +that the [electric field](/know/concept/electric-field/) $\vb{E} = 0$: + +$$\begin{aligned} + \vb{u} + = 0 + \qquad \qquad + \pdv{\vb{u}}{t} + = 0 + \qquad \qquad + \pdv{\vb{B}}{t} + = 0 + \qquad \qquad + \vb{E} + = 0 +\end{aligned}$$ + +To get the plasma's equilibrium state for a given $\vb{B}$, +we first solve [Ampère's law](/know/concept/maxwells-equations/) +for the current density $\vb{J}$, +and then the MHD momentum equation for the pressure $p$. +Symmetries should be used whenever possible to reduce these equations: + +$$\begin{aligned} + \nabla \cross \vb{B} + = \mu_0 \vb{J} + \qquad \qquad + \vb{J} \cross \vb{B} + = \nabla p +\end{aligned}$$ + +Note that the latter implies that $\nabla p$ is always orthogonal to $\vb{J}$ and $\vb{B}$, +meaning that the current density and magnetic field must follow +surfaces of constant pressure. + + +## ϴ-pinch + +In a so-called **ϴ-pinch**, the confining field $\vb{B}$ +is parallel to the $z$-axis, and its magntiude $B_z$ may only depend on $r$. +Concretely, we have: + +$$\begin{aligned} + \vb{B} + = B_z(r) \: \vu{e}_z +\end{aligned}$$ + +Where $\vu{e}_z$ is the basis vector of the $z$-axis. +This $\vb{B}$ confines the plasma thanks to +the [Lorentz force](/know/concept/lorentz-force/), +which makes charged particles gyrate around magnetic field lines. + +Using Ampère's law, we find that the resulting current density $\vb{J}$, +expressed in $(r, \theta, z)$: + +$$\begin{aligned} + \vb{J} + = \frac{1}{\mu_0} \nabla \cross \vb{B} + = \frac{1}{\mu_0} + \begin{bmatrix} + \displaystyle \frac{1}{r} \pdv{B_z}{\theta} - \pdv{B_\theta}{z} \\ + \displaystyle \pdv{B_r}{z} - \pdv{B_z}{r} \\ + \displaystyle \frac{1}{r} \Big( \pdv{(r B_\theta)}{r} - \pdv{B_r}{\theta} \Big) + \end{bmatrix} + = -\frac{1}{\mu_0} \pdv{B_z}{r} \: \vu{e}_\theta +\end{aligned}$$ + +Where we have used that only $B_z$ is nonzero, +and that it only depends on $r$. +This yields a circular current parallel to $\vu{e}_\theta$, +hence the name *ϴ-pinch*. + +Next, we use the MHD momentum equation to find the pressure gradient $\nabla p$. +The cross product is easy to evaluate, +since $\vb{B}$ is parallel to $\vu{e}_z$, +and $\vb{J}$ is parallel to $\vu{e}_\theta$: + +$$\begin{aligned} + \nabla p + &= \vb{J} \cross \vb{B} + = J_\theta \vu{e}_\theta \cross B_z \vu{e}_z + = J_\theta B_z \vu{e}_r + = - \frac{1}{\mu_0} \pdv{B_z}{r} B_z \: \vu{e}_r +\end{aligned}$$ + +Consequently, $\nabla p$ is parallel to $\vu{e}_r$, +and only depends on $r$ through $B_z$. +Along the $r$-direction, the above equation can be rewritten +into the following equilibrium condition: + +$$\begin{aligned} + \boxed{ + \pdv{r} \bigg( p + \frac{B_z^2}{2 \mu_0} \bigg) + = 0 + } +\end{aligned}$$ + +In other words, the parenthesized expression does not depend on $r$. + + +## Z-pinch + +Meanwhile, in a so-called **Z-pinch**, +we create an $r$-dependent current $\vb{J}$ parallel to the $z$-axis: + +$$\begin{aligned} + \vb{J} + = J_z(r) \: \vu{e}_z +\end{aligned}$$ + +We can then deduce $\vb{B}$ from Ampère's law, +using that only $J_z$ is nonzero, +and that $\pdv*{B_r}{\theta} = 0$ due to circular symmetry: + +$$\begin{aligned} + \vb{J} + = \frac{1}{\mu_0} \nabla \cross \vb{B} + = \frac{1}{\mu_0} + \begin{bmatrix} + \displaystyle \frac{1}{r} \pdv{B_z}{\theta} - \pdv{B_\theta}{z} \\ + \displaystyle \pdv{B_r}{z} - \pdv{B_z}{r} \\ + \displaystyle \frac{1}{r} \Big( \pdv{(r B_\theta)}{r} - \pdv{B_r}{\theta} \Big) + \end{bmatrix} + = \frac{1}{\mu_0 r} \pdv{(r B_\theta)}{r} \: \vu{e}_z +\end{aligned}$$ + +Therefore, $\vb{J}$ induces a circular $\vb{B} = B_\theta(r) \: \vu{e}_\theta$, +which confines the plasma for the same reason as in the ϴ-pinch: +the Lorentz force makes particles gyrate around magnetic field lines. + +Next, the resulting pressure gradient $\nabla p$ is found from the MHD momentum equation: + +$$\begin{aligned} + \nabla p + &= \vb{J} \cross \vb{B} + = J_z \vb{e}_z \cross B_\theta \vb{e}_\theta + = - J_z B_\theta \vu{e}_r + = - \frac{1}{\mu_0 r} \pdv{(r B_\theta)}{r} B_\theta \: \vu{e}_r +\end{aligned}$$ + +Once again, $\nabla p$ is parallel to $\vu{e}_r$ and only depends on $r$. +After rearranging, we thus arrive at the following equilibrium condition in the $r$-direction: + +$$\begin{aligned} + \boxed{ + \pdv{r} \bigg( p + \frac{B_\theta^2}{2 \mu_0} \bigg) + \frac{B_\theta^2}{\mu_0 r} + = 0 + } +\end{aligned}$$ + + +## Screw pinch + +Thanks to the linearity of electromagnetism, +a ϴ-pinch and Z-pinch can be combined to create a **screw pinch**, +where $\vb{J}$ and $\vb{B}$ both have nonzero $\theta$ and $z$-components. +By performing the above procedure again, +the following equilibrium condition is obtained: + +$$\begin{aligned} + \boxed{ + \pdv{r} \bigg( p + \frac{B_z^2}{2 \mu_0} + \frac{B_\theta^2}{2 \mu_0} \bigg) + \frac{B_\theta^2}{\mu_0 r} + = 0 + } +\end{aligned}$$ + +Which simply combines the terms of the preceding equations. +Indirectly, this result is relevant for certain types of nuclear fusion reactor, +e.g. the tokamak, which basically consists of a screw pinch bent into a torus. +The resulting equilibrium is given by +the [Grad-Shafranov equation](/know/concept/grad-shafranov-equation/). + + + +## References +1. M. Salewski, A.H. Nielsen, + *Plasma physics: lecture notes*, + 2021, unpublished. diff --git a/content/know/concept/spherical-coordinates/index.pdc b/content/know/concept/spherical-coordinates/index.pdc index 4768110..dc8acd2 100644 --- a/content/know/concept/spherical-coordinates/index.pdc +++ b/content/know/concept/spherical-coordinates/index.pdc @@ -51,7 +51,7 @@ $$\begin{aligned} \end{aligned}$$ The spherical coordinate system is an orthogonal -[curvilinear](/know/concept/curvilinear-coordinates/) system, +[curvilinear system](/know/concept/curvilinear-coordinates/), whose scale factors $h_r$, $h_\theta$ and $h_\varphi$ we want to find. To do so, we calculate the differentials of the Cartesian coordinates: |