diff options
author | Prefetch | 2021-07-09 19:09:17 +0200 |
---|---|---|
committer | Prefetch | 2021-07-09 19:09:17 +0200 |
commit | e1194ad9030cfe2ae790229a59ecef5db01303c5 (patch) | |
tree | f199b5d4c8ca59233fd0391469ee1b22e11f0baa | |
parent | 0d3574cf5cdb0c7aebe596b1035a2ea64b5327b6 (diff) |
Expand knowledge base
6 files changed, 527 insertions, 16 deletions
diff --git a/content/know/category/thermodynamic-ensembles.md b/content/know/category/thermodynamic-ensembles.md new file mode 100644 index 0000000..4477f23 --- /dev/null +++ b/content/know/category/thermodynamic-ensembles.md @@ -0,0 +1,9 @@ +--- +title: "Thermodynamic ensembles" +firstLetter: "T" +date: 2021-07-09T16:54:35+02:00 +draft: false +layout: "category" +--- + +This page will fill itself. diff --git a/content/know/concept/maxwell-relations/index.pdc b/content/know/concept/maxwell-relations/index.pdc new file mode 100644 index 0000000..7e17a66 --- /dev/null +++ b/content/know/concept/maxwell-relations/index.pdc @@ -0,0 +1,296 @@ +--- +title: "Maxwell relations" +firstLetter: "M" +publishDate: 2021-07-08 +categories: +- Physics +- Thermodynamics + +date: 2021-07-08T10:58:37+02:00 +draft: false +markup: pandoc +--- + +# Maxwell relations + +The **Maxwell relations** are a useful set of relations in thermodynamics. +They arise from the fact that the order of differentiation is irrelevant +for well-behaved functions (sometimes known as the *Schwarz theorem*), +applied to the [thermodynamic potentials](/know/concept/thermodynamic-potential/). + +We start by proving the general "recipe". +Given that the differential element of some $z$ is defined in terms of +two constant quantities $A$ and $B$ and two independent variables $x$ and $y$: + +$$\begin{aligned} + \dd{z} \equiv A \dd{x} + B \dd{y} +\end{aligned}$$ + +Then the quantities $A$ and $B$ can be extracted +by dividing by $\dd{x}$ and $\dd{y}$ respectively: + +$$\begin{aligned} + A = \Big( \pdv{z}{x} \Big)_y + \qquad + B = \Big( \pdv{z}{y} \Big)_x +\end{aligned}$$ + +By differentiating $A$ and $B$, +and using that the order of differentiation is irrelevant, we find: + +$$\begin{aligned} + \pdv{z}{y}{x} = + \boxed{ + \Big( \pdv{A}{y} \Big)_x + = \Big( \pdv{B}{x} \Big)_y + } + = \pdv{z}{x}{y} +\end{aligned}$$ + +Using this, all Maxwell relations are derived. +Each relation also has a complement: + +$$\begin{aligned} + \Big( \pdv{A}{y} \Big)_x^{-1} = + \boxed{ + \Big( \pdv{y}{A} \Big)_x + = \Big( \pdv{x}{B} \Big)_y + } + = \Big( \pdv{B}{x} \Big)_y^{-1} +\end{aligned}$$ + +The following quantities are useful to rewrite some of the Maxwell relations: +the iso-$P$ thermal expansion coefficient $\alpha$, +the iso-$T$ combressibility $\kappa_T$, +the iso-$S$ combressibility $\kappa_S$, +the iso-$V$ heat capacity $C_V$, +and the iso-$P$ heat capacity $C_P$: + +$$\begin{gathered} + \alpha \equiv \frac{1}{V} \Big( \pdv{V}{T} \Big)_{P,N} + \\ + \kappa_T \equiv - \frac{1}{V} \Big( \pdv{V}{P} \Big)_{T,N} + \qquad \quad + \kappa_S \equiv - \frac{1}{V} \Big( \pdv{V}{P} \Big)_{S,N} + \\ + C_V \equiv T \Big( \pdv{S}{T} \Big)_{V,N} + \qquad \qquad + C_P \equiv T \Big( \pdv{S}{T} \Big)_{P,N} +\end{gathered}$$ + + +## Internal energy + +The following Maxwell relations can be derived +from the internal energy $U(S, V, N)$: + +$$\begin{gathered} + \pdv{U}{V}{S} = + \boxed{ + \Big( \pdv{T}{V} \Big)_S = - \Big( \pdv{P}{S} \Big)_V + } + = \pdv{U}{S}{V} + \\ + \pdv{U}{V}{N} = + \boxed{ + \Big( \pdv{\mu}{V} \Big)_N = - \Big( \pdv{P}{N} \Big)_V + } + = \pdv{U}{N}{V} + \\ + \pdv{U}{S}{N} = + \boxed{ + \Big( \pdv{\mu}{S} \Big)_N = \Big( \pdv{T}{N} \Big)_S + } + = \pdv{U}{N}{S} +\end{gathered}$$ + +And the corresponding reciprocal relations are then given by: + +$$\begin{gathered} + \boxed{ + \Big( \pdv{V}{T} \Big)_S = - \Big( \pdv{S}{P} \Big)_V + } + \\ + \boxed{ + \Big( \pdv{V}{\mu} \Big)_N = - \Big( \pdv{N}{P} \Big)_V + } + \\ + \boxed{ + \Big( \pdv{S}{\mu} \Big)_N = \Big( \pdv{N}{T} \Big)_S + } +\end{gathered}$$ + + +## Enthalpy + +The following Maxwell relations can be derived +from the enthalpy $H(S, P, N)$: + +$$\begin{gathered} + \pdv{H}{P}{S} = + \boxed{ + \Big( \pdv{T}{P} \Big)_S = \Big( \pdv{V}{S} \Big)_P + } + = \pdv{H}{S}{P} + \\ + \pdv{H}{P}{N} = + \boxed{ + \Big( \pdv{\mu}{P} \Big)_N = \Big( \pdv{V}{N} \Big)_P + } + = \pdv{H}{N}{P} + \\ + \pdv{H}{N}{S} = + \boxed{ + \Big( \pdv{T}{N} \Big)_S = \Big( \pdv{\mu}{S} \Big)_N + } + = \pdv{H}{S}{N} +\end{gathered}$$ + +And the corresponding reciprocal relations are then given by: + +$$\begin{gathered} + \boxed{ + \Big( \pdv{P}{T} \Big)_S = \Big( \pdv{S}{V} \Big)_P + } + \\ + \boxed{ + \Big( \pdv{P}{\mu} \Big)_N = \Big( \pdv{N}{V} \Big)_P + } + \\ + \boxed{ + \Big( \pdv{N}{T} \Big)_S = \Big( \pdv{S}{\mu} \Big)_N + } +\end{gathered}$$ + + +## Helmholtz free energy + +The following Maxwell relations can be derived +from the Helmholtz free energy $F(T, V, N)$: + +$$\begin{gathered} + - \pdv{F}{V}{T} = + \boxed{ + \Big( \pdv{S}{V} \Big)_T = \Big( \pdv{P}{T} \Big)_V + } + = - \pdv{F}{T}{V} + \\ + \pdv{F}{V}{N} = + \boxed{ + \Big( \pdv{\mu}{V} \Big)_N = - \Big( \pdv{P}{N} \Big)_V + } + = \pdv{F}{N}{V} + \\ + \pdv{F}{T}{N} = + \boxed{ + \Big( \pdv{\mu}{T} \Big)_N = - \Big( \pdv{S}{N} \Big)_T + } + = \pdv{F}{N}{T} +\end{gathered}$$ + +And the corresponding reciprocal relations are then given by: + +$$\begin{gathered} + \boxed{ + \Big( \pdv{V}{S} \Big)_T = \Big( \pdv{T}{P} \Big)_V + } + \\ + \boxed{ + \Big( \pdv{V}{\mu} \Big)_N = - \Big( \pdv{N}{P} \Big)_V + } + \\ + \boxed{ + \Big( \pdv{T}{\mu} \Big)_N = - \Big( \pdv{N}{S} \Big)_T + } +\end{gathered}$$ + + +## Gibbs free energy + +The following Maxwell relations can be derived +from the Gibbs free energy $G(T, P, N)$: + +$$\begin{gathered} + \pdv{G}{T}{P} = + \boxed{ + \Big( \pdv{V}{T} \Big)_P = - \Big( \pdv{S}{P} \Big)_T + } + = \pdv{G}{P}{T} + \\ + \pdv{G}{N}{P} = + \boxed{ + \Big( \pdv{V}{N} \Big)_P = \Big( \pdv{\mu}{P} \Big)_N + } + = \pdv{G}{P}{N} + \\ + \pdv{G}{T}{N} = + \boxed{ + \Big( \pdv{\mu}{T} \Big)_N = - \Big( \pdv{S}{N} \Big)_T + } + = \pdv{G}{N}{T} +\end{gathered}$$ + +And the corresponding reciprocal relations are then given by: + +$$\begin{gathered} + \boxed{ + \Big( \pdv{T}{V} \Big)_P = - \Big( \pdv{P}{S} \Big)_T + } + \\ + \boxed{ + \Big( \pdv{N}{V} \Big)_P = \Big( \pdv{P}{\mu} \Big)_N + } + \\ + \boxed{ + \Big( \pdv{T}{\mu} \Big)_N = - \Big( \pdv{N}{S} \Big)_T + } +\end{gathered}$$ + + +## Landau potential + +The following Maxwell relations can be derived +from the Gibbs free energy $\Omega(T, V, \mu)$: + +$$\begin{gathered} + - \pdv{\Omega}{V}{T} = + \boxed{ + \Big( \pdv{S}{V} \Big)_T = \Big( \pdv{P}{T} \Big)_V + } + = - \pdv{\Omega}{T}{V} + \\ + - \pdv{\Omega}{\mu}{V} = + \boxed{ + \Big( \pdv{P}{\mu} \Big)_V = \Big( \pdv{N}{V} \Big)_\mu + } + = - \pdv{\Omega}{V}{\mu} + \\ + - \pdv{\Omega}{T}{\mu} = + \boxed{ + \Big( \pdv{N}{T} \Big)_\mu = \Big( \pdv{S}{\mu} \Big)_T + } + = - \pdv{\Omega}{\mu}{T} +\end{gathered}$$ + +And the corresponding reciprocal relations are then given by: + +$$\begin{gathered} + \boxed{ + \Big( \pdv{V}{S} \Big)_T = \Big( \pdv{T}{P} \Big)_V + } + \\ + \boxed{ + \Big( \pdv{\mu}{P} \Big)_V = \Big( \pdv{V}{N} \Big)_\mu + } + \\ + \boxed{ + \Big( \pdv{T}{N} \Big)_\mu = \Big( \pdv{\mu}{S} \Big)_T + } +\end{gathered}$$ + + + +## References +1. H. Gould, J. Tobochnik, + *Statistical and thermal physics*, 2nd edition, + Princeton. diff --git a/content/know/concept/microcanonical-ensemble/index.pdc b/content/know/concept/microcanonical-ensemble/index.pdc new file mode 100644 index 0000000..89d114b --- /dev/null +++ b/content/know/concept/microcanonical-ensemble/index.pdc @@ -0,0 +1,123 @@ +--- +title: "Microcanonical ensemble" +firstLetter: "M" +publishDate: 2021-07-09 +categories: +- Physics +- Thermodynamics +- Thermodynamic ensembles + +date: 2021-07-08T11:00:59+02:00 +draft: false +markup: pandoc +--- + +# Microcanonical ensemble + +The **microcanonical** or **NVE ensemble** is a statistical model +of a theoretical system with constant internal energy $U$, +volume $V$, and particle count $N$. + +Consider a box with those properties. +We now put an imaginary rigid wall inside the box, +thus dividing it into two subsystems $A$ and $B$, +which can exchange energy (i.e. heat), but no particles. +At any time, $A$ has energy $U_A$, and $B$ has $U_B$, +so that in total $U = U_A \!+\! U_B$. + +The particles in each subsystem are in a certain **microstate** (configuration). +For a given $U$, there is a certain number $c$ +of possible whole-box microstates with that energy, given by: + +$$\begin{aligned} + c(U) + = \sum_{U_A \le U} c_A(U_A) \: c_B(U - U_A) +\end{aligned}$$ + +Where $c_A$ and $c_B$ are the number of microstates of +the subsystems at the given energy levels. + +The core assumption of the microcanonical ensemble +is that each of these microstates has the same probability $1 / c$. +Consequently, the probability of finding an energy $U_A$ in $A$ is: + +$$\begin{aligned} + p_A(U_A) + = \frac{c_A(U_A) \:c_B(U - U_A)}{c(U)} +\end{aligned}$$ + +If a certain $U_A$ has a higher probability, +then there are more $A$-microstates with that energy, +meaning that $U_A$ is "easier to reach" or "more comfortable" for the system. +Note that $c(U)$ is a constant, because $U$ is given. + +After some time, the system will reach equilibrium, +where both $A$ and $B$ have settled into a "comfortable" position. +In other words, the subsystem microstates at equilibrium +must be maxima of their probability distributions $p_A$ and $p_B$. + +We only need to look at $p_A$. +Clearly, a maximum of $p_A$ is also a maximum of $\ln p_A$: + +$$\begin{aligned} + \ln p_A(U_A) + = \ln{c_A(U_A)} + \ln{c_B(U - U_A)} - \ln{c(U)} +\end{aligned}$$ + +Here, in the quantity $\ln{c_A}$, +we recognize the definition of +the entropy $S_A \equiv k_B \ln{c_A}$, +where $k_B$ is Boltzmann's constant. +We thus multiply by $k_B$: + +$$\begin{aligned} + k_B \ln p_A(U_A) + = S_A(U_A) + S_B(U - U_A) - k_B \ln{c(U)} +\end{aligned}$$ + +Since entropy is additive over subsystems, +the total is $S = S_A + S_B$. +To reach equilibrium, we are thus +**maximizing the total entropy**, +meaning that $S$ is the [thermodynamic potential](/know/concept/thermodynamic-potential/) +that corresponds to the microcanonical ensemble. + +For our example, maximizing gives the following, +more concrete, equilibrium condition: + +$$\begin{aligned} + 0 + = k_B \dv{(\ln{p_A})}{U_A} + = \pdv{S_A}{U_A} + \pdv{S_B}{U_A} + = \pdv{S_A}{U_A} - \pdv{S_B}{U_B} +\end{aligned}$$ + +By definition, the energy-derivative of the entropy +is the reciprocal temperature $1 / T$. +In other words, +equilibrium is reached when both subsystems +are at the same temperature: + +$$\begin{aligned} + \frac{1}{T_A} + = \pdv{S_A}{U_A} + = \pdv{S_B}{U_B} + = \frac{1}{T_B} +\end{aligned}$$ + +Recall that our partitioning into $A$ and $B$ was arbitrary, +meaning that, in fact, the temperature $T$ must be uniform in the whole box. + +We get this specific result because +heat was the only thing that $A$ and $B$ could exchange. +The key point, however, +is that the total entropy $S$ must be maximized. +We also would have reached that conclusion if our imaginary wall +allowed changes in volume $V_A$ and particle count $N_A$. + + + +## References +1. H. Gould, J. Tobochnik, + *Statistical and thermal physics*, 2nd edition, + Princeton. diff --git a/content/know/concept/thermodynamic-potential/index.pdc b/content/know/concept/thermodynamic-potential/index.pdc index 5d154d5..b65891f 100644 --- a/content/know/concept/thermodynamic-potential/index.pdc +++ b/content/know/concept/thermodynamic-potential/index.pdc @@ -226,7 +226,7 @@ with respect to the natural variables $T$, $V$, and $\mu$: $$\begin{aligned} \boxed{ - S = \Big( \pdv{\Omega}{T} \Big)_{V,\mu} + S = - \Big( \pdv{\Omega}{T} \Big)_{V,\mu} \qquad P = - \Big( \pdv{\Omega}{V} \Big)_{T,\mu} \qquad diff --git a/content/know/concept/time-dependent-perturbation-theory/index.pdc b/content/know/concept/time-dependent-perturbation-theory/index.pdc index fbb71b2..b16e3ee 100644 --- a/content/know/concept/time-dependent-perturbation-theory/index.pdc +++ b/content/know/concept/time-dependent-perturbation-theory/index.pdc @@ -17,7 +17,7 @@ markup: pandoc In quantum mechanics, **time-dependent perturbation theory** exists to deal with time-varying perturbations to the Schrödinger equation. This is in contrast to [time-independent perturbation theory](/know/concept/time-independent-perturbation-theory/), -where the perturbation is is stationary. +where the perturbation is stationary. Let $\hat{H}_0$ be the base time-independent Hamiltonian, and $\hat{H}_1$ be a time-varying perturbation, with @@ -32,14 +32,14 @@ $\hat{H}_0 \ket{n} = E_n \ket{n}$ has already been solved, such that the full solution is: $$\begin{aligned} - \ket{\Psi_0(t)} = \sum_{n} c_n \ket{n} \exp(- i E_n t / \hbar) + \ket{\Psi_0(t)} = \sum_{n} c_n \ket{n} \exp\!(- i E_n t / \hbar) \end{aligned}$$ Since these $\ket{n}$ form a complete basis, the perturbed wave function can be written in the same form, but with time-dependent coefficients $c_n(t)$: $$\begin{aligned} - \ket{\Psi(t)} = \sum_{n} c_n(t) \ket{n} \exp(- i E_n t / \hbar) + \ket{\Psi(t)} = \sum_{n} c_n(t) \ket{n} \exp\!(- i E_n t / \hbar) \end{aligned}$$ We insert this ansatz in the time-dependent Schrödinger equation, and @@ -50,32 +50,32 @@ $$\begin{aligned} &= \hat{H}_0 \ket{\Psi(t)} + \lambda \hat{H}_1 \ket{\Psi(t)} - i \hbar \dv{t} \ket{\Psi(t)} \\ &= \sum_{n} - \Big( c_n \hat{H}_0 \ket{n} + \lambda c_n \hat{H}_1 \ket{n} - c_n E_n \ket{n} - i \hbar \dv{c_n}{t} \ket{n} \Big) \exp(- i E_n t / \hbar) + \Big( c_n \hat{H}_0 \ket{n} + \lambda c_n \hat{H}_1 \ket{n} - c_n E_n \ket{n} - i \hbar \dv{c_n}{t} \ket{n} \Big) \exp\!(- i E_n t / \hbar) \\ - &= \sum_{n} \Big( \lambda c_n \hat{H}_1 \ket{n} - i \hbar \dv{c_n}{t} \ket{n} \Big) \exp(- i E_n t / \hbar) + &= \sum_{n} \Big( \lambda c_n \hat{H}_1 \ket{n} - i \hbar \dv{c_n}{t} \ket{n} \Big) \exp\!(- i E_n t / \hbar) \end{aligned}$$ We then take the inner product with an arbitrary stationary basis state $\ket{m}$: $$\begin{aligned} 0 - &= \sum_{n} \Big( \lambda c_n \matrixel{m}{\hat{H}_1}{n} - i \hbar \frac{d c_n}{dt} \braket{m}{n} \Big) \exp(- i E_n t / \hbar) + &= \sum_{n} \Big( \lambda c_n \matrixel{m}{\hat{H}_1}{n} - i \hbar \frac{d c_n}{dt} \braket{m}{n} \Big) \exp\!(- i E_n t / \hbar) \end{aligned}$$ Thanks to orthonormality, this removes the latter term from the summation: $$\begin{aligned} - i \hbar \frac{d c_m}{dt} \exp(- i E_m t / \hbar) - &= \lambda \sum_{n} c_n \matrixel{m}{\hat{H}_1}{n} \exp(- i E_n t / \hbar) + i \hbar \frac{d c_m}{dt} \exp\!(- i E_m t / \hbar) + &= \lambda \sum_{n} c_n \matrixel{m}{\hat{H}_1}{n} \exp\!(- i E_n t / \hbar) \end{aligned}$$ We divide by the left-hand exponential and define -$\omega_{mn} = (E_m - E_n) / \hbar$ to get: +$\omega_{mn} \equiv (E_m - E_n) / \hbar$ to get: $$\begin{aligned} \boxed{ i \hbar \frac{d c_m}{dt} - = \lambda \sum_{n} c_n(t) \matrixel{m}{\hat{H}_1(t)}{n} \exp(i \omega_{mn} t) + = \lambda \sum_{n} c_n(t) \matrixel{m}{\hat{H}_1(t)}{n} \exp\!(i \omega_{mn} t) } \end{aligned}$$ @@ -85,7 +85,7 @@ Furthermore, it is useful to write this equation in integral form instead: $$\begin{aligned} c_m(t) - = c_m(0) - \lambda \frac{i}{\hbar} \sum_{n} \int_0^t c_n(\tau) \matrixel{m}{\hat{H}_1(\tau)}{n} \exp(i \omega_{mn} \tau) \dd{\tau} + = c_m(0) - \lambda \frac{i}{\hbar} \sum_{n} \int_0^t c_n(\tau) \matrixel{m}{\hat{H}_1(\tau)}{n} \exp\!(i \omega_{mn} \tau) \dd{\tau} \end{aligned}$$ If this cannot be solved exactly, we must approximate it. We expand @@ -100,15 +100,15 @@ We then insert this into the integral and collect the non-zero orders of $\lambd $$\begin{aligned} c_m^{(1)}(t) - &= - \frac{i}{\hbar} \sum_{n} \int_0^t c_n^{(0)} \matrixel{m}{\hat{H}_1(\tau)}{n} \exp(i \omega_{mn} \tau) \dd{\tau} + &= - \frac{i}{\hbar} \sum_{n} \int_0^t c_n^{(0)} \matrixel{m}{\hat{H}_1(\tau)}{n} \exp\!(i \omega_{mn} \tau) \dd{\tau} \\ c_m^{(2)}(t) &= - \frac{i}{\hbar} \sum_{n} - \int_0^t c_n^{(1)}(\tau) \matrixel{m}{\hat{H}_1(\tau)}{n} \exp(i \omega_{mn} \tau) \dd{\tau} + \int_0^t c_n^{(1)}(\tau) \matrixel{m}{\hat{H}_1(\tau)}{n} \exp\!(i \omega_{mn} \tau) \dd{\tau} \\ c_m^{(3)}(t) &= - \frac{i}{\hbar} \sum_{n} - \int_0^t c_n^{(2)}(\tau) \matrixel{m}{\hat{H}_1(\tau)}{n} \exp(i \omega_{mn} \tau) \dd{\tau} + \int_0^t c_n^{(2)}(\tau) \matrixel{m}{\hat{H}_1(\tau)}{n} \exp\!(i \omega_{mn} \tau) \dd{\tau} \end{aligned}$$ And so forth. The pattern here is clear: we can calculate the $(j\!+\!1)$th @@ -116,7 +116,90 @@ correction using only our previous result for the $j$th correction. We cannot go any further than this without considering a specific perturbation $\hat{H}_1(t)$. +## Sinusoidal perturbation + +Arguably the most important perturbation +is a sinusoidally-varying potential, which represents +e.g. incoming electromagnetic waves, +or an AC voltage being applied to the system. +In this case, $\hat{H}_1$ has the following form: + +$$\begin{aligned} + \hat{H}_1(\vec{r}, t) + \equiv V(\vec{r}) \sin\!(\omega t) + = \frac{1}{2 i} V(\vec{r}) \: \big( \exp\!(i \omega t) - \exp\!(-i \omega t) \big) +\end{aligned}$$ + +We abbreviate $V_{mn} = \matrixel{m}{V}{n}$, +and take the first-order correction formula: + +$$\begin{aligned} + c_m^{(1)}(t) + &= - \frac{1}{2 \hbar} \sum_{n} V_{mn} c_n^{(0)} + \int_0^t \exp\!\big(i \tau (\omega_{mn} \!+\! \omega)\big) - \exp\big(i \tau (\omega_{mn} \!-\! \omega)\big) \dd{\tau} + \\ + &= \frac{i}{2 \hbar} \sum_{n} V_{mn} c_n^{(0)} + \bigg( \frac{\exp\!\big(i t (\omega_{mn} \!+\! \omega) \big) - 1}{\omega_{mn} + \omega} + + \frac{\exp\!\big(i t (\omega_{mn} \!-\! \omega) \big) - 1}{\omega_{mn} - \omega} \bigg) +\end{aligned}$$ + +For simplicity, we let the system start in a known state $\ket{a}$, +such that $c_n^{(0)} = \delta_{na}$, +and we assume that the driving frequency is close to resonance $\omega \approx \omega_{ma}$, +such that the second term dominates the first, which can then be neglected. +We thus get: + +$$\begin{aligned} + c_m^{(1)}(t) + &= i \frac{V_{ma}}{2 \hbar} \frac{\exp\!\big(i t (\omega_{ma} \!-\! \omega) \big) - 1}{\omega_{ma} - \omega} + \\ + &= i \frac{V_{ma}}{2 \hbar} + \frac{\exp\!\big(i t (\omega_{ma} \!-\! \omega) / 2 \big) - \exp\!\big(\!-\! i t (\omega_{ma} \!-\! \omega) / 2 \big)}{\omega_{ma} - \omega} + \: \exp\!\big(i t (\omega_{ma} \!-\! \omega) / 2 \big) + \\ + &= - \frac{V_{ma}}{\hbar} + \frac{\sin\!\big( t (\omega_{ma} \!-\! \omega) / 2 \big)}{\omega_{ma} - \omega} + \: \exp\!\big(i t (\omega_{ma} \!-\! \omega) / 2 \big) +\end{aligned}$$ + +Taking the norm squared yields the **transition probability**: +the probability that a particle that started in state $\ket{a}$ +will be found in $\ket{m}$ at time $t$: + +$$\begin{aligned} + \boxed{ + P_{a \to m} + = |c_m^{(1)}(t)|^2 + = \frac{|V_{ma}|^2}{\hbar^2} \frac{\sin^2\!\big( (\omega_{ma} - \omega) t / 2 \big)}{(\omega_{ma} - \omega)^2} + } +\end{aligned}$$ + +The result would be the same if $\hat{H}_1 \equiv V \cos\!(\omega t)$. +However, if instead $\hat{H}_1 \equiv V \exp\!(- i \omega t)$, +the result is larger by a factor of $4$, +which can cause confusion when comparing literature. + +In any case, the probability oscillates as a function of $t$ +with period $T = 2 \pi / (\omega_{ma} \!-\! \omega)$, +so after one period the particle is certain to be back in $\ket{a}$. + +However, when regarded as a function of $\omega$, +the probability takes the form of +a sinc-function centred around $(\omega_{ma} \!-\! \omega)$, +so it is highest for transitions with energy $\hbar \omega = E_m \!-\! E_a$. + +Also note that the sinc-distribution becomes narrower over time, +which roughly means that it takes some time +for the system to "notice" that +it is being driven periodically. +In other words, there is some "inertia" to it. + + + ## References 1. D.J. Griffiths, D.F. Schroeter, *Introduction to quantum mechanics*, 3rd edition, Cambridge. +2. R. Shankar, + *Principles of quantum mechanics*, 2nd edition, + Springer. diff --git a/content/know/concept/time-independent-perturbation-theory/index.pdc b/content/know/concept/time-independent-perturbation-theory/index.pdc index 3be3cd5..d2a879f 100644 --- a/content/know/concept/time-independent-perturbation-theory/index.pdc +++ b/content/know/concept/time-independent-perturbation-theory/index.pdc @@ -14,7 +14,7 @@ markup: pandoc # Time-independent perturbation theory -**Time-independent perturbation theory**, sometimes also called +**Time-independent perturbation theory**, also known as **stationary state perturbation theory**, is a specific application of perturbation theory to the time-independent Schrödinger equation in quantum physics, for |