diff options
author | Prefetch | 2021-09-09 17:25:09 +0200 |
---|---|---|
committer | Prefetch | 2021-09-09 17:25:09 +0200 |
commit | e85acc31dbf0c244d34a806f5c700990d374f14c (patch) | |
tree | 4c72c71352a3e29a7caf74b1fd5a32094b455353 | |
parent | ea12abd73dd1e624367935353605a3c1327b5281 (diff) |
Expand knowledge base
-rw-r--r-- | content/know/concept/einstein-coefficients/index.pdc | 66 | ||||
-rw-r--r-- | content/know/concept/hermite-polynomials/index.pdc | 100 | ||||
-rw-r--r-- | content/know/concept/laguerre-polynomials/index.pdc | 131 | ||||
-rw-r--r-- | content/know/concept/legendre-polynomials/index.pdc | 125 | ||||
-rw-r--r-- | content/know/concept/plancks-law/index.pdc | 146 |
5 files changed, 540 insertions, 28 deletions
diff --git a/content/know/concept/einstein-coefficients/index.pdc b/content/know/concept/einstein-coefficients/index.pdc index 37141f2..bd8f76c 100644 --- a/content/know/concept/einstein-coefficients/index.pdc +++ b/content/know/concept/einstein-coefficients/index.pdc @@ -5,6 +5,7 @@ publishDate: 2021-07-11 categories: - Physics - Optics +- Electromagnetism - Quantum mechanics date: 2021-07-11T18:22:14+02:00 @@ -105,7 +106,7 @@ $$\begin{aligned} \end{aligned}$$ Since $u(\omega_0)$ represents only black-body radiation, -our result must agree with Planck's law: +our result must agree with [Planck's law](/know/concept/plancks-law/): $$\begin{aligned} u(\omega_0) @@ -143,31 +144,30 @@ Consider the Hamiltonian of an electron with charge $q = - e$: $$\begin{aligned} \hat{H} - &= \frac{\vec{P}{}^2}{2 m} - \frac{q}{2 m} (\vec{A} \cdot \vec{P} + \vec{P} \cdot \vec{A}) + \frac{q^2 \vec{A}{}^2}{2m} + q \phi + &= \frac{\vec{P}{}^2}{2 m} - \frac{q}{2 m} (\vec{A} \cdot \vec{P} + \vec{P} \cdot \vec{A}) + \frac{q^2 \vec{A}{}^2}{2m} + V \end{aligned}$$ -With $\vec{A}(\vec{r}, t)$ the magnetic vector potential, -and $\phi(\vec{r}, t)$ the electric scalar potential. +With $\vec{A}(\vec{r}, t)$ the electromagnetic vector potential. We reduce this by fixing the Coulomb gauge $\nabla \!\cdot\! \vec{A} = 0$, such that $\vec{A} \cdot \vec{P} = \vec{P} \cdot \vec{A}$, -and by assuming that $\vec{A}{}^2$ is negligibly small. -This leaves us with: +and by assuming that $\vec{A}{}^2$ is negligible: $$\begin{aligned} \hat{H} - &= \frac{\vec{P}{}^2}{2 m} - \frac{q}{m} \vec{P} \cdot \vec{A} + q \phi + &= \frac{\vec{P}{}^2}{2 m} - \frac{q}{m} \vec{P} \cdot \vec{A} + V \end{aligned}$$ The last term is the Coulomb interaction between the electron and the nucleus. -We can interpret the second term, involving the weak $\vec{A}$, as a perturbation $\hat{H}_1$: +We can interpret the second term, +involving the weak $\vec{A}$, as a perturbation $\hat{H}_1$: $$\begin{aligned} \hat{H} = \hat{H}_0 + \hat{H}_1 \qquad \quad \hat{H}_0 - \equiv \frac{\vec{P}{}^2}{2 m} + q \phi + \equiv \frac{\vec{P}{}^2}{2 m} + V \qquad \quad \hat{H}_1 \equiv - \frac{q}{m} \vec{P} \cdot \vec{A} @@ -179,7 +179,9 @@ $$\begin{aligned} \vec{A}(\vec{r}, t) = \vec{A}_0 \exp\!(i \vec{k} \cdot \vec{r} - i \omega t) \end{aligned}$$ -The corresponding perturbative electric field $\vec{E}$ points in the same direction: +The corresponding perturbative +[electric field](/know/concept/electric-field/) $\vec{E}$ +points in the same direction: $$\begin{aligned} \vec{E}(\vec{r}, t) @@ -231,6 +233,14 @@ $$\begin{aligned} Where $\vec{p} \equiv q \vec{r} = - e \vec{r}$ is the electric dipole moment of the electron, hence the name *electric dipole approximation*. +Finally, because electric fields are actually real +(we made it complex for mathematical convenience), +we take the real part, yielding: + +$$\begin{aligned} + \hat{H}_1(t) + = - q \vec{r} \cdot \vec{E}_0 \cos\!(- i \omega t) +\end{aligned}$$ ## Polarized light @@ -249,19 +259,19 @@ then generally $\ket{1}$ and $\ket{2}$ will be even or odd functions of $z$, such that $\matrixel{1}{z}{1} = \matrixel{2}{z}{2} = 0$, leading to: $$\begin{gathered} - \matrixel{1}{H_1}{2} = - q E_0 V + \matrixel{1}{H_1}{2} = - q E_0 U \qquad - \matrixel{2}{H_1}{1} = - q E_0 V^* + \matrixel{2}{H_1}{1} = - q E_0 U^* \\ \matrixel{1}{H_1}{1} = \matrixel{2}{H_1}{2} = 0 \end{gathered}$$ -Where $V \equiv \matrixel{1}{z}{2}$ is a constant. +Where $U \equiv \matrixel{1}{z}{2}$ is a constant. The chance of an upward jump (i.e. absorption) is: $$\begin{aligned} P_{12} - = \frac{q^2 E_0^2 |V|^2}{\hbar^2} \frac{\sin^2\!\big( (\omega_0 - \omega) t / 2 \big)}{(\omega_0 - \omega)^2} + = \frac{q^2 E_0^2 |U|^2}{\hbar^2} \frac{\sin^2\!\big( (\omega_0 - \omega) t / 2 \big)}{(\omega_0 - \omega)^2} \end{aligned}$$ Meanwhile, the transition probability for stimulated emission is as follows, @@ -270,7 +280,7 @@ and is therefore symmetric around $\omega_{ba}$: $$\begin{aligned} P_{21} - = \frac{q^2 E_0^2 |V|^2}{\hbar^2} \frac{\sin^2\!\big( (\omega_0 - \omega) t / 2 \big)}{(\omega_0 - \omega)^2} + = \frac{q^2 E_0^2 |U|^2}{\hbar^2} \frac{\sin^2\!\big( (\omega_0 - \omega) t / 2 \big)}{(\omega_0 - \omega)^2} \end{aligned}$$ Surprisingly, the probabilities of absorption and stimulated emission are the same! @@ -295,7 +305,7 @@ Putting this in the previous result gives the following transition probability: $$\begin{aligned} P_{12} - = \frac{2 u q^2 |V|^2}{\varepsilon_0 \hbar^2} \frac{\sin^2\!\big( (\omega_0 - \omega) t / 2 \big)}{(\omega_0 - \omega)^2} + = \frac{2 u q^2 |U|^2}{\varepsilon_0 \hbar^2} \frac{\sin^2\!\big( (\omega_0 - \omega) t / 2 \big)}{(\omega_0 - \omega)^2} \end{aligned}$$ For a continuous light spectrum, @@ -303,7 +313,7 @@ this $u$ turns into the spectral energy density $u(\omega)$: $$\begin{aligned} P_{12} - = \frac{2 q^2 |V|^2}{\varepsilon_0 \hbar^2} + = \frac{2 q^2 |U|^2}{\varepsilon_0 \hbar^2} \int_0^\infty \frac{\sin^2\!\big( (\omega_0 - \omega) t / 2 \big)}{(\omega_0 - \omega)^2} u(\omega) \dd{\omega} \end{aligned}$$ @@ -319,8 +329,8 @@ which turns out to be $\pi t$: $$\begin{aligned} P_{12} - = \frac{q^2 |V|^2}{\varepsilon_0 \hbar^2} u(\omega_0) \int_{-\infty}^\infty \frac{\sin^2\!\big(x t \big)}{x^2} \dd{x} - = \frac{\pi q^2 |V|^2}{\varepsilon_0 \hbar^2} u(\omega_0) \:t + = \frac{q^2 |U|^2}{\varepsilon_0 \hbar^2} u(\omega_0) \int_{-\infty}^\infty \frac{\sin^2\!\big(x t \big)}{x^2} \dd{x} + = \frac{\pi q^2 |U|^2}{\varepsilon_0 \hbar^2} u(\omega_0) \:t \end{aligned}$$ From this, the transition rate $R_{12} = B_{12} u(\omega_0)$ @@ -329,7 +339,7 @@ is then calculated as follows: $$\begin{aligned} R_{12} = \pdv{P_{2 \to 1}}{t} - = \frac{\pi q^2 |V|^2}{\varepsilon_0 \hbar^2} u(\omega_0) + = \frac{\pi q^2 |U|^2}{\varepsilon_0 \hbar^2} u(\omega_0) \end{aligned}$$ Using the relations from earlier with $g_1 = g_2$, @@ -338,9 +348,9 @@ for a polarized incoming light spectrum: $$\begin{aligned} \boxed{ - B_{21} = B_{12} = \frac{\pi q^2 |V|^2}{\varepsilon_0 \hbar^2} + B_{21} = B_{12} = \frac{\pi q^2 |U|^2}{\varepsilon_0 \hbar^2} \qquad - A_{21} = \frac{\omega_0^3 q^2 |V|^2}{\pi \varepsilon \hbar c^3} + A_{21} = \frac{\omega_0^3 q^2 |U|^2}{\pi \varepsilon \hbar c^3} } \end{aligned}$$ @@ -375,9 +385,9 @@ Evaluating the integrals yields: $$\begin{aligned} \expval{|W|^2} - = \frac{2 \pi}{4 \pi} |V|^2 \int_0^\pi \cos^2(\theta) \sin\!(\theta) \dd{\theta} - = \frac{|V|^2}{2} \Big[ \!-\! \frac{\cos^3(\theta)}{3} \Big]_0^\pi - = \frac{|V|^2}{3} + = \frac{2 \pi}{4 \pi} |U|^2 \int_0^\pi \cos^2(\theta) \sin\!(\theta) \dd{\theta} + = \frac{|U|^2}{2} \Big[ \!-\! \frac{\cos^3(\theta)}{3} \Big]_0^\pi + = \frac{|U|^2}{3} \end{aligned}$$ With this additional constant factor $1/3$, @@ -385,16 +395,16 @@ the transition rate $R_{12}$ is modified to: $$\begin{aligned} R_{12} - = \frac{\pi q^2 |V|^2}{3 \varepsilon_0 \hbar^2} u(\omega_0) + = \frac{\pi q^2 |U|^2}{3 \varepsilon_0 \hbar^2} u(\omega_0) \end{aligned}$$ From which it follows that the Einstein coefficients for unpolarized light are given by: $$\begin{aligned} \boxed{ - B_{21} = B_{12} = \frac{\pi q^2 |V|^2}{3 \varepsilon_0 \hbar^2} + B_{21} = B_{12} = \frac{\pi q^2 |U|^2}{3 \varepsilon_0 \hbar^2} \qquad - A_{21} = \frac{\omega_0^3 q^2 |V|^2}{3 \pi \varepsilon \hbar c^3} + A_{21} = \frac{\omega_0^3 q^2 |U|^2}{3 \pi \varepsilon \hbar c^3} } \end{aligned}$$ diff --git a/content/know/concept/hermite-polynomials/index.pdc b/content/know/concept/hermite-polynomials/index.pdc new file mode 100644 index 0000000..7f59945 --- /dev/null +++ b/content/know/concept/hermite-polynomials/index.pdc @@ -0,0 +1,100 @@ +--- +title: "Hermite polynomials" +firstLetter: "H" +publishDate: 2021-09-08 +categories: +- Mathematics +- Statistics + +date: 2021-09-08T17:00:42+02:00 +draft: false +markup: pandoc +--- + +# Hermite polynomials + +The **Hermite polynomials** are a set of functions +that appear in physics and statistics, +although slightly different definitions are used in those fields. + + +## Physicists' definition + +The **Hermite equation** is an eigenvalue problem for $n$, +and the Hermite polynomials $H_n(x)$ are its eigenfunctions $u(x)$, +subject to the boundary condition that $u$ grows at most polynomially, +in which case the eigenvalues $n$ are non-negative integers: + +$$\begin{aligned} + \boxed{ + u'' - 2 x u' + 2 n u = 0 + } +\end{aligned}$$ + +The $n$th-order Hermite polynomial $H_n(x)$ +is therefore as follows, according to physicists: + +$$\begin{aligned} + H_n(x) + &= (-1)^n \exp\!(x^2) \dv[n]{x} \exp\!(- x^2) + \\ + &= \Big( 2 x - \dv{x} \Big)^n 1 +\end{aligned}$$ + +This form is known as a *Rodrigues' formula*. +The first handful of Hermite polynomials are: + +$$\begin{gathered} + H_0(x) = 1 + \qquad \quad + H_1(x) = 2 x + \qquad \quad + H_2(x) = 4 x^2 - 2 + \\ + H_3(x) = 8 x^3 - 12 x + \qquad \quad + H_4(x) = 16 x^4 - 48 x^2 + 12 +\end{gathered}$$ + +And then more $H_n$ can be computed quickly +using the following recurrence relation: + +$$\begin{aligned} + \boxed{ + H_{n + 1}(x) = 2 x H_n(x) - 2n H_{n-1}(x) + } +\end{aligned}$$ + +They (almost) form an *Appell sequence*, +meaning their derivatives are like so: + +$$\begin{aligned} + \boxed{ + \dv[k]{x} H_n(x) + = 2^k \frac{n!}{(n - k)!} H_{n - k}(x) + } +\end{aligned}$$ + +Importantly, all $H_n$ are orthogonal with respect to the weight function $w(x) \equiv \exp\!(- x^2)$: + +$$\begin{aligned} + \boxed{ + \braket{H_n}{w H_m} + \equiv \int_{-\infty}^\infty H_n(x) \: H_m(x) \: w(x) \dd{x} + = \sqrt{\pi} 2^n n! \: \delta_{nm} + } +\end{aligned}$$ + +Where $\delta_{nm}$ is the Kronecker delta. +Finally, they form a basis in the [Hilbert space](/know/concept/hilbert-space/) +of all functions $f(x)$ for which $\braket{f}{w f}$ is finite. +This means that every such $f$ can be expanded in $H_n$: + +$$\begin{aligned} + \boxed{ + f(x) + = \sum_{n = 0}^\infty a_n H_n(x) + = \sum_{n = 0}^\infty \frac{\braket{H_n}{w f}}{\braket{H_n}{w H_n}} H_n(x) + } +\end{aligned}$$ + diff --git a/content/know/concept/laguerre-polynomials/index.pdc b/content/know/concept/laguerre-polynomials/index.pdc new file mode 100644 index 0000000..a4be1ff --- /dev/null +++ b/content/know/concept/laguerre-polynomials/index.pdc @@ -0,0 +1,131 @@ +--- +title: "Laguerre polynomials" +firstLetter: "L" +publishDate: 2021-09-08 +categories: +- Mathematics + +date: 2021-09-08T17:00:48+02:00 +draft: false +markup: pandoc +--- + +# Laguerre polynomials + +The **Laguerre polynomials** are a set of useful functions that arise in physics. +They are the non-singular eigenfunctions $u(x)$ of **Laguerre's equation**, +with the corresponding eigenvalues $n$ being non-negative integers: + +$$\begin{aligned} + \boxed{ + x u'' + (1 - x) u' + n u = 0 + } +\end{aligned}$$ + +The $n$th-order Laguerre polynomial $L_n(x)$ +is given in the form of a *Rodrigues' formula* by: + +$$\begin{aligned} + L_n(x) + &= \frac{1}{n!} \exp\!(x) \dv[n]{x} \big(x^n \exp\!(-x)\big) + \\ + &= \frac{1}{n!} \Big( \dv{x} - 1 \Big)^n x^n +\end{aligned}$$ + +The first couple of Laguerre polynomials $L_n(x)$ are therefore as follows: + +$$\begin{gathered} + L_0(x) = 1 + \qquad \quad + L_1(x) = 1 - x + \qquad \quad + L_2(x) = \frac{1}{2} (x^2 - 4 x + 2) +\end{gathered}$$ + +Based on Laguerre's equation, +**Laguerre's generalized equation** is as follows, +with an arbitrary real (but usually integer) parameter $\alpha$, +and $n$ still a non-negative integer: + +$$\begin{aligned} + \boxed{ + x u'' + (\alpha + 1 - x) u' + n u = 0 + } +\end{aligned}$$ + +Its solutions, denoted by $L_n^\alpha(x)$, +are the **generalized** or **associated Laguerre polynomials**, +which also have a Rodrigues' formula. +Note that if $\alpha = 0$ then $L_n^\alpha = L_n$: + +$$\begin{aligned} + L_n^\alpha(x) + &= \frac{1}{n!} x^{-\alpha} \exp\!(x) \dv[n]{x} \big( x^{n + \alpha} \exp\!(-x) \big) + \\ + &= \frac{x^{-\alpha}}{n!} \Big( \dv{x} - 1 \Big)^n x^{n + \alpha} +\end{aligned}$$ + +The first couple of associated Laguerre polynomials $L_n^\alpha(x)$ are therefore as follows: + +$$\begin{aligned} + L_0^\alpha(x) = 1 + \qquad + L_1^\alpha(x) = \alpha + 1 - x + \qquad + L_2^\alpha(x) = \frac{1}{2} (x^2 - 2 \alpha x - 4 x + \alpha^2 + 3 \alpha + 2) +\end{aligned}$$ + +And then more $L_n^\alpha$ can be computed quickly +using the following recurrence relation: + +$$\begin{aligned} + \boxed{ + L_{n + 1}^\alpha(x) + = \frac{(\alpha + 2 n + 1 - x) L_n^\alpha(x) - (\alpha + n) L_{n - 1}^\alpha(x)}{n + 1} + } +\end{aligned}$$ + +The derivatives are also straightforward to calculate +using the following relation: + +$$\begin{aligned} + \boxed{ + \dv[k]{x} L_n^\alpha(x) + = (-1)^k L_{n - k}^{\alpha + k}(x) + } +\end{aligned}$$ + +Noteworthy is that these polynomials (both normal and associated) +are all mutually orthogonal for $x \in [0, \infty[$, +with respect to the weight function $w(x) \equiv x^\alpha \exp\!(-x)$: + +$$\begin{aligned} + \boxed{ + \braket{L_m^\alpha}{w L_n^\alpha} + = \int_0^\infty L_m^\alpha(x) \: L_n^\alpha(x) \: w(x) \dd{x} + = \frac{\Gamma(n + \alpha + 1)}{n!} \delta_{nm} + } +\end{aligned}$$ + +Where $\delta_{nm}$ is the Kronecker delta. +Moreover, they form a basis in +the [Hilbert space](/know/concept/hilbert-space/) +of all functions $f(x)$ for which $\braket{f}{w f}$ is finite. +Any such $f$ can thus be expanded as follows: + +$$\begin{aligned} + \boxed{ + f(x) + = \sum_{n = 0}^\infty a_n L_n^\alpha(x) + = \sum_{n = 0}^\infty \frac{\braket{L_n}{w f}}{\braket{L_n}{w L_n}} L_n^\alpha(x) + } +\end{aligned}$$ + +Finally, the $L_n^\alpha(x)$ are related to +the [Hermite polynomials](/know/concept/hermite-polynomials/) $H_n(x)$ like so: + +$$\begin{aligned} + H_{2n(x)} &= (-1)^n 2^{2n} n! \: L_n^{-1/2}(x^2) + \\ + H_{2n + 1(x)} &= (-1)^n 2^{2n + 1} n! \: L_n^{1/2}(x^2) +\end{aligned}$$ diff --git a/content/know/concept/legendre-polynomials/index.pdc b/content/know/concept/legendre-polynomials/index.pdc new file mode 100644 index 0000000..d21f263 --- /dev/null +++ b/content/know/concept/legendre-polynomials/index.pdc @@ -0,0 +1,125 @@ +--- +title: "Legendre polynomials" +firstLetter: "L" +publishDate: 2021-09-08 +categories: +- Mathematics + +date: 2021-09-08T17:00:53+02:00 +draft: false +markup: pandoc +--- + +# Legendre polynomials + +The **Legendre polynomials** are a set of functions that sometimes arise in physics. +They are the eigenfunctions $u(x)$ of **Legendre's differential equation**, +which is a ([Sturm-Liouville](/know/concept/sturm-liouville-theory/)) +eigenvalue problem for $\ell (\ell + 1)$, +where $\ell$ turns out to be a non-negative integer: + +$$\begin{aligned} + \boxed{ + (1 - x^2) u'' - 2 x u' + \ell (\ell + 1) u = 0 + } +\end{aligned}$$ + +The $\ell$th-degree Legendre polynomial $P_\ell(x)$ +is given in the form of a *Rodrigues' formula* by: + +$$\begin{aligned} + P_\ell(x) + &= \frac{1}{2^\ell \ell!} \dv[\ell]{x} (x^2 - 1)^\ell +\end{aligned}$$ + +The first handful of Legendre polynomials $P_\ell(x)$ are therefore as follows: + +$$\begin{gathered} + P_0(x) = 1 + \qquad \quad + P_1(x) = x + \qquad \quad + P_2(x) = \frac{1}{2} (3 x^2 - 1) + \\ + P_3(x) = \frac{1}{2} (5 x^3 - 3 x) + \qquad \quad + P_4(x) = \frac{1}{8} (35 x^4 - 30 x^2 + 3) +\end{gathered}$$ + +And then more $P_\ell$ can be computed quickly +using **Bonnet's recursion formula**: + +$$\begin{aligned} + \boxed{ + (\ell + 1) P_{\ell + 1}(x) = (2 \ell + 1) x P_\ell(x) - \ell P_{\ell - 1}(x) + } +\end{aligned}$$ + +The derivative of a given $P_\ell$ can be calculated recursively +using the following relation: + +$$\begin{aligned} + \boxed{ + \dv{x} P_{\ell + 1} + = (\ell + 1) P_\ell(x) + x \dv{x} P_\ell(x) + } +\end{aligned}$$ + +Noteworthy is that the Legendre polynomials +are mutually orthogonal for $x \in [-1, 1]$: + +$$\begin{aligned} + \boxed{ + \braket{P_m}{P_n} + = \int_{-1}^{1} P_m(x) \: P_n(x) \dd{x} + = \frac{2}{2 n + 1} \delta_{nm} + } +\end{aligned}$$ + +As was to be expected from Sturm-Liouville theory. +Likewise, they form a complete basis in the +[Hilbert space](/know/concept/hilbert-space/) +of piecewise continuous functions $f(x)$ on $x \in [-1, 1]$, +meaning: + +$$\begin{aligned} + \boxed{ + f(x) + = \sum_{\ell = 0}^\infty a_\ell P_\ell(x) + = \sum_{\ell = 0}^\infty \frac{\braket{P_\ell}{f}}{\braket{P_\ell}{P_\ell}} P_\ell(x) + } +\end{aligned}$$ + +Each Legendre polynomial $P_\ell$ comes with +a set of **associated Legendre polynomials** $P_\ell^m(x)$ +of order $m$ and degree $\ell$. +These are the non-singular solutions of the **general Legendre equation**, +where $m$ and $\ell$ are integers satisfying $-\ell \le m \le \ell$: + +$$\begin{aligned} + \boxed{ + (1 - x^2) u'' - 2 x u' + \Big( \ell (\ell + 1) - \frac{m^2}{1 - x^2} \Big) u = 0 + } +\end{aligned}$$ + +The $\ell$th-degree $m$th-order associated Legendre polynomial $P_\ell^m$ +is as follows for $m \ge 0$: + +$$\begin{aligned} + P_\ell^m(x) + = (-1)^m (1 - x^2)^{m/2} \dv[m]{x} P_\ell(x) +\end{aligned}$$ + +Here, the $(-1)^m$ in front is called the **Condon-Shortley phase**, +and is omitted by some authors. +For negative orders $m$, +an additional constant factor is necessary: + +$$\begin{aligned} + P_\ell^{-m}(x) = (-1)^m \frac{(\ell - m)!}{(\ell + m)!} P_\ell^m(x) +\end{aligned}$$ + +Beware, the name is misleading: +if $m$ is odd, then $P_\ell^m$ is actually not a polynomial. +Moreover, not all $P_\ell^m$ are mutually orthogonal +(but some are). diff --git a/content/know/concept/plancks-law/index.pdc b/content/know/concept/plancks-law/index.pdc new file mode 100644 index 0000000..6e01b9b --- /dev/null +++ b/content/know/concept/plancks-law/index.pdc @@ -0,0 +1,146 @@ +--- +title: "Planck's law" +firstLetter: "P" +publishDate: 2021-09-09 +categories: +- Physics + +date: 2021-09-09T08:12:14+02:00 +draft: false +markup: pandoc +--- + +# Planck's law + +**Planck's law** describes the radiation spectrum of a **black body**: +a theoretical object in thermal equilibrium, +which absorbs photons, +re-radiates them, and then re-absorbs them. + +Since the photon population varies with time, +this is a [grand canonical ensemble](/know/concept/grand-canonical-ensemble/), +and photons are bosons +(see [Pauli exclusion principle](/know/concept/pauli-exclusion-principle/)), +this system must obey the +[Bose-Einstein distribution](/know/concept/bose-einstein-distribution/), +with a chemical potential $\mu = 0$ (due to the freely varying population): + +$$\begin{aligned} + f_B(E) + = \frac{1}{\exp\!(\beta E) - 1} +\end{aligned}$$ + +Each photon has an energy $E = \hbar \omega = \hbar c k$, +so the [density of states](/know/concept/density-of-states/) +is as follows in 3D: + +$$\begin{aligned} + g(E) + = 2 \frac{g(k)}{E'(k)} + = \frac{V k^2}{\pi^2 \hbar c} + = \frac{V E^2}{\pi^2 \hbar^3 c^3} + = \frac{8 \pi V E^2}{h^3 c^3} +\end{aligned}$$ + +Where the factor of $2$ accounts for the photon's polarization degeneracy. +We thus expect that the number of photons $N(E)$ +with an energy between $E$ and $E + \dd{E}$ is given by: + +$$\begin{aligned} + N(E) \dd{E} + = f_B(E) \: g(E) \dd{E} + = \frac{8 \pi V}{h^3 c^3} \frac{E^2}{\exp\!(\beta E) - 1} \dd{E} +\end{aligned}$$ + +By substituting $E = h \nu$, we find that the number of photons $N(\nu)$ +with a frequency between $\nu$ and $\nu + \dd{\nu}$ must be as follows: + +$$\begin{aligned} + N(\nu) \dd{\nu} + = \frac{8 \pi V}{c^3} \frac{\nu^2}{\exp\!(\beta h \nu) - 1} \dd{\nu} +\end{aligned}$$ + +Multiplying by the energy $h \nu$ yields the distribution of the radiated energy, +which we divide by the volume $V$ to get Planck's law, +also called the **Plank distribution**, +describing a black body's radiated spectral energy density per unit volume: + +$$\begin{aligned} + \boxed{ + u(\nu) + = \frac{8 \pi h}{c^3} \frac{\nu^3}{\exp\!(\beta h \nu) - 1} + } +\end{aligned}$$ + + +## Wien's displacement law + +The Planck distribution peaks at a particular frequency $\nu_{\mathrm{max}}$, +which can be found by solving the following equation for $\nu$: + +$$\begin{aligned} + 0 + = u'(\nu) + \quad \implies \quad + 0 + = 3 \nu^2 (\exp\!(\beta h \nu) - 1) - \nu^3 \beta h \exp\!(\beta h \nu) +\end{aligned}$$ + +By defining $x \equiv \beta h \nu_{\mathrm{max}}$, +this turns into the following transcendental equation: + +$$\begin{aligned} + 3 + = (3 - x) \exp\!(x) +\end{aligned}$$ + +Whose numerical solution leads to **Wien's displacement law**, given by: + +$$\begin{aligned} + \boxed{ + \frac{h \nu_{\mathrm{max}}}{k_B T} + \approx 2.822 + } +\end{aligned}$$ + +Which states that the peak frequency $\nu_{\mathrm{max}}$ +is proportional to the temperature $T$. + + +## Stefan-Boltzmann law + +Because $u(\nu)$ represents the radiated spectral energy density, +we can find the total radiated energy $U$ per unit volume by integrating over $\nu$: + +$$\begin{aligned} + U + &= \int_0^\infty u(\nu) \dd{\nu} + = \frac{8 \pi h}{c^3} \int_0^\infty \frac{\nu^3}{\exp\!(\beta h \nu) - 1} \dd{\nu} + \\ + &= \frac{8 \pi h}{\beta^3 h^3 c^3} \int_0^\infty \frac{(\beta h \nu)^3}{\exp\!(\beta h \nu) - 1} \dd{\nu} + = \frac{8 \pi}{\beta^4 h^3 c^3} \int_0^\infty \frac{x^3}{\exp\!(x) - 1} \dd{x} +\end{aligned}$$ + +This definite integral turns out to be $\pi^4/15$, +leading us to the **Stefan-Boltzmann law**, +which states that the radiated energy is proportional to $T^4$: + +$$\begin{aligned} + \boxed{ + U = \frac{4 \sigma}{c} T^4 + } +\end{aligned}$$ + +Where $\sigma$ is the **Stefan-Boltzmann constant**, which is defined as follows: + +$$\begin{aligned} + \sigma + \equiv \frac{2 \pi^5 k_B^4}{15 c^2 h^3} +\end{aligned}$$ + + + +## References +1. H. Gould, J. Tobochnik, + *Statistical and thermal physics*, 2nd edition, + Princeton. |