diff options
author | Prefetch | 2021-09-25 10:26:44 +0200 |
---|---|---|
committer | Prefetch | 2021-09-25 10:26:44 +0200 |
commit | f7c7464e29cb19083a2488c393f3707e97248c4f (patch) | |
tree | 2b4076b26de60d4bf44772d45bd2d2eeace81a61 | |
parent | bb79f9b1beee85f2290f3bed9b62eacaca445602 (diff) |
Expand knowledge base
-rw-r--r-- | content/know/concept/drude-model/index.pdc | 236 | ||||
-rw-r--r-- | content/know/concept/fabry-perot-cavity/index.pdc | 128 | ||||
-rw-r--r-- | content/know/concept/heisenberg-picture/index.pdc | 4 | ||||
-rw-r--r-- | content/know/concept/kubo-formula/index.pdc | 227 |
4 files changed, 593 insertions, 2 deletions
diff --git a/content/know/concept/drude-model/index.pdc b/content/know/concept/drude-model/index.pdc new file mode 100644 index 0000000..a738dff --- /dev/null +++ b/content/know/concept/drude-model/index.pdc @@ -0,0 +1,236 @@ +--- +title: "Drude model" +firstLetter: "D" +publishDate: 2021-09-23 +categories: +- Physics +- Electromagnetism +- Optics + +date: 2021-09-23T16:22:51+02:00 +draft: false +markup: pandoc +--- + +# Drude model + +The **Drude model** classically predicts +the dielectric function and electric conductivity of a gas of free charge carriers, +as found in metals and doped semiconductors. + + +## Metals + +An [electromagnetic wave](/know/concept/electromagnetic-wave-equation/) +has an oscillating [electric field](/know/concept/electric-field/) +$E(t) = E_0 \exp\!(- i \omega t)$ +that exerts a force on the charge carriers, +which have mass $m$ and charge $q$. +They thus obey the following equation of motion, +where $\gamma$ is a frictional damping coefficient: + +$$\begin{aligned} + m \dv[2]{x}{t} + m \gamma \dv{x}{t} + = q E_0 \exp\!(- i \omega t) +\end{aligned}$$ + +Inserting the ansatz $x(t) = x_0 \exp\!(- i \omega t)$ +and isolating for the displacement $x_0$ yields: + +$$\begin{aligned} + - x_0 m \omega^2 - i x_0 m \gamma \omega + = q E_0 + \quad \implies \quad + x_0 + = - \frac{q E_0}{m (\omega^2 + i \gamma \omega)} +\end{aligned}$$ + +The polarization density $P(t)$ is therefore as shown below. +Note that the dipole moment $p$ goes from negative to positive, +and the electric field $E$ from positive to negative. +Let $N$ be the density of carriers in the gas, then: + +$$\begin{aligned} + P(t) + = N p(t) + = N q x(t) + = - \frac{N q^2}{m (\omega^2 + i \gamma \omega)} E(t) +\end{aligned}$$ + +The electric displacement field $D$ is thus as follows, +where $\varepsilon_r$ is the unknown relative permittivity of the gas, +which we will find shortly: + +$$\begin{aligned} + D + = \varepsilon_0 \varepsilon_r E + = \varepsilon_0 E + P + = \varepsilon_0 \bigg( 1 - \frac{N q^2}{\varepsilon_0 m} \frac{1}{\omega^2 + i \gamma \omega} \bigg) E +\end{aligned}$$ + +The parenthesized expression is the desired dielectric function $\varepsilon_r$, +which depends on $\omega$: + +$$\begin{aligned} + \boxed{ + \varepsilon_r(\omega) + %= 1 - \frac{N q^2}{\varepsilon_0 m} \frac{1}{\omega^2 + i \gamma \omega} + = 1 - \frac{\omega_p^2}{\omega^2 + i \gamma \omega} + } +\end{aligned}$$ + +Where we have defined the important so-called **plasma frequency** like so: + +$$\begin{aligned} + \boxed{ + \omega_p + \equiv \sqrt{\frac{N q^2}{\varepsilon_0 m}} + } +\end{aligned}$$ + +If $\gamma = 0$, then $\varepsilon_r$ is +negative $\omega < \omega_p$, +positive for $\omega > \omega_p$, +and zero for $\omega = \omega_p$. +Respectively, this leads to +an imaginary index $\sqrt{\varepsilon_r}$ (high absorption), +a real index tending to $1$ (transparency), +and the possibility of self-sustained plasma oscillations. +For metals, $\omega_p$ lies in the UV. + +We can refine this result for $\varepsilon_r$, +by recognizing the (mean) velocity $v = \dv*{x}{t}$, +and rewriting the equation of motion accordingly: + +$$\begin{aligned} + m \dv{v}{t} + m \gamma v = q E(t) +\end{aligned}$$ + +Note that $m v$ is simply the momentum $p$. +We define the **momentum scattering time** $\tau \equiv 1 / \gamma$, +which represents the average time between collisions, +where each collision resets the involved particles' momentums to zero. +Or, more formally: + +$$\begin{aligned} + \dv{p}{t} + = - \frac{p}{\tau} + q E +\end{aligned}$$ + +Returning to the equation for the mean velocity $v$, +we insert the ansatz $v(t) = v_0 \exp\!(- i \omega t)$, +for the same electric field $E(t) = E_0 \exp\!(-i \omega t)$ as before: + +$$\begin{aligned} + - i m \omega v_0 + \frac{m}{\tau} v_0 = q E_0 + \quad \implies \quad + v_0 = \frac{q \tau}{m (1 - i \omega \tau)} E_0 +\end{aligned}$$ + +From $v(t)$, we find the resulting average current density $J(t)$ to be as follows: + +$$\begin{aligned} + J(t) + = - N q v(t) + = \sigma E(t) +\end{aligned}$$ + +Where $\sigma(\omega)$ is the **AC conductivity**, +which depends on the **DC conductivity** $\sigma_0$: + +$$\begin{aligned} + \boxed{ + \sigma + = \frac{\sigma_0}{1 - i \omega \tau} + } + \qquad \quad + \boxed{ + \sigma_0 + = \frac{N q^2 \tau}{m} + } +\end{aligned}$$ + +We can use these quantities to rewrite +the dielectric function $\varepsilon_r$ from earlier: + +$$\begin{aligned} + \boxed{ + \varepsilon_r(\omega) + = 1 + \frac{i \sigma(\omega)}{\varepsilon_0 \omega} + } +\end{aligned}$$ + + +## Doped semiconductors + +Doping a semiconductor introduces +free electrons (n-type) +or free holes (p-type), +which can be treated as free particles +moving in the bands of the material. + +The Drude model can also be used in this case, +by replacing the actual carrier mass $m$ +by the effective mass $m^*$. +Furthermore, semiconductors already have +a high intrinsic permittivity $\varepsilon_{\mathrm{int}}$ +before the dopant is added, +so the diplacement field $D$ is: + +$$\begin{aligned} + D + = \varepsilon_0 E + P_{\mathrm{int}} + P_{\mathrm{free}} + = \varepsilon_{\mathrm{int}} \varepsilon_0 E - \frac{N q^2}{m^* (\omega^2 + i \gamma \omega)} E +\end{aligned}$$ + +Where $P_{\mathrm{int}}$ is the intrinsic undoped polarization, +and $P_{\mathrm{free}}$ is the contribution of the free carriers. +The dielectric function $\varepsilon_r(\omega)$ is therefore given by: + +$$\begin{aligned} + \boxed{ + \varepsilon_r(\omega) + %= \varepsilon_{\mathrm{int}}(\omega) - \frac{N q^2}{\varepsilon_0 m^*} \frac{1}{\omega^2 + i \gamma \omega} + = \varepsilon_{\mathrm{int}} \Big( 1 - \frac{\omega_p^2}{\omega^2 + i \gamma \omega} \Big) + } +\end{aligned}$$ + +Where the plasma frequency $\omega_p$ has been redefined as follows +to include $\varepsilon_\mathrm{int}$: + +$$\begin{aligned} + \boxed{ + \omega_p + = \sqrt{\frac{N q^2}{\varepsilon_{\mathrm{int}} \varepsilon_0 m^*}} + } +\end{aligned}$$ + +The meaning of $\omega_p$ is the same as for metals, +with high absorption for $\omega < \omega_p$. +However, due to the lower carrier density $N$ in a semiconductor, +$\omega_p$ lies in the IR rather than UV. + +However, instead of asymptotically going to $1$ for $\omega > \omega_p$ like a metal, +$\varepsilon_r$ tends to $\varepsilon_\mathrm{int}$ instead, +and crosses $1$ along the way, +at which point the reflectivity is zero. +This occurs at: + +$$\begin{aligned} + \omega^2 + = \frac{\varepsilon_{\mathrm{int}}}{\varepsilon_{\mathrm{int}} - 1} \omega_p^2 +\end{aligned}$$ + +This is used to experimentally determine the effective mass $m^*$ +of the doped semiconductor, +by finding which value of $m^*$ gives the measured $\omega$. + + + +## References +1. M. Fox, + *Optical properties of solids*, 2nd edition, + Oxford. +2. S.H. Simon, + *The Oxford solid state basics*, + Oxford. diff --git a/content/know/concept/fabry-perot-cavity/index.pdc b/content/know/concept/fabry-perot-cavity/index.pdc new file mode 100644 index 0000000..2f1f84f --- /dev/null +++ b/content/know/concept/fabry-perot-cavity/index.pdc @@ -0,0 +1,128 @@ +--- +title: "Fabry-Pérot cavity" +firstLetter: "F" +publishDate: 2021-09-18 +categories: +- Physics +- Optics + +date: 2021-09-18T00:42:59+02:00 +draft: false +markup: pandoc +--- + +# Fabry-Pérot cavity + +In its simplest form, a **Fabry-Pérot cavity** +is a region of light-transmitting medium +surrounded by two mirrors, +which may transmit some of the incoming light. +Such a setup can be used as e.g. an interferometer or a laser cavity. + + +## Modes of macroscopic cavity + +Consider a Fabry-Pérot cavity large enough +that we can neglect the mirrors' thicknesses, +which have reflection coefficients $r_L$ and $r_R$. +Let $\tilde{n}_C$ be the complex refractive index inside, +and $\tilde{n}_L$ and $\tilde{n}_R$ be the indices outside. +The cavity has length $L$, centered on $x = 0$. + +To find the quasinormal modes, +we make the following ansatz, with mode number $m$: + +$$\begin{aligned} + E_m(x) + = + \begin{cases} + A_m \exp\!(-i \tilde{n}_L \tilde{k}_m x) & \mathrm{if}\; x < -L/2 \\ + B_m \exp\!(i \tilde{n}_C \tilde{k}_m x) + C_m \exp\!(-i \tilde{n}_C \tilde{k}_m x) & \mathrm{if}\; -\!L/2 < x < L/2 \\ + D_m \exp\!(i \tilde{n}_R \tilde{k}_m x) & \mathrm{if}\; L/2 < x + \end{cases} +\end{aligned}$$ + +On the left, $B_m$ is the reflection of $C_m$, +and on the right, $C_m$ is the reflection of $B_m$, +where the reflected amplitude is determined +by the coefficients $r_L$ and $r_L$, respectively: + +$$\begin{aligned} + B_m \exp\!(-i \tilde{n}_C \tilde{k}_m L/2) + &= r_L C_m \exp\!(i \tilde{n}_C \tilde{k}_m L/2) + \\ + C_m \exp\!(-i \tilde{n}_C \tilde{k}_m L/2) + &= r_R B_m \exp\!(i \tilde{n}_C \tilde{k}_m L/2) +\end{aligned}$$ + +These equations might seem to contradict each other. +We recast them into matrix form: + +$$\begin{aligned} + \begin{bmatrix} + 1 & - r_L \exp\!(i \tilde{n}_C \tilde{k}_m L) \\ + - r_R \exp\!(i \tilde{n}_C \tilde{k}_m L) & 1 + \end{bmatrix} + \cdot + \begin{bmatrix} + B_m \\ C_m + \end{bmatrix} + = + \begin{bmatrix} + 0 \\ 0 + \end{bmatrix} +\end{aligned}$$ + +Now, we do not want to be able to find values for $B_m$ and $C_m$ +that satisfy this for a given $\tilde{k}_m$. +Instead, we only want specific values of $\tilde{k}_m$ to be allowed, +corresponding to the cavity's modes. +We thus demand that the determinant to zero: + +$$\begin{aligned} + 0 + &= 1 - r_L r_R \exp\!(i 2 \tilde{n}_C \tilde{k}_m L) +\end{aligned}$$ + +Isolating this for $\tilde{k}_m$ yields the following modes, +where $m$ is an arbitrary integer: + +$$\begin{aligned} + \boxed{ + \tilde{k}_m + = - \frac{\ln\!(r_L r_R) + i 2 \pi m}{i 2 \tilde{n}_C L} + } +\end{aligned}$$ + +These $\tilde{k}_m$ satisfy the matrix equation above. +Thanks to linearity, we can choose one of $B_m$ or $C_m$, +and then the other is determined by the corresponding equation. + +Finally, we look at the light transmitted through the mirrors, +according to $1 \!-\! r_L$ and $1 \!-\! r_R$: + +$$\begin{aligned} + A_m \exp\!(i \tilde{n}_L \tilde{k}_m L/2) + &= (1 - r_L) C_m \exp\!(i \tilde{n}_C \tilde{k}_m L/2) + \\ + D_m \exp\!(i \tilde{n}_R \tilde{k}_m L/2) + &= (1 - r_R) B_m \exp\!(i \tilde{n}_C \tilde{k}_m L/2) +\end{aligned}$$ + +We simply isolate for $A_m$ and $D_m$ respectively, +yielding the following amplitudes: + +$$\begin{aligned} + A_m + &= (1 - r_L) C_m \exp\!\big( i (\tilde{n}_C \!-\! \tilde{n}_L) \tilde{k}_m L/2 \big) + \\ + D_m + &= (1 - r_R) B_m \exp\!\big( i (\tilde{n}_C \!-\! \tilde{n}_R) \tilde{k}_m L/2 \big) +\end{aligned}$$ + + + +## References +1. P.T. Kristensen, K. Herrmann, F. Intravaia, K. Busch, + [Modeling electromagnetic resonators using quasinormal modes](https://doi.org/10.1364/AOP.377940), + 2020, Optical Society of America. diff --git a/content/know/concept/heisenberg-picture/index.pdc b/content/know/concept/heisenberg-picture/index.pdc index 9e4887d..c49169f 100644 --- a/content/know/concept/heisenberg-picture/index.pdc +++ b/content/know/concept/heisenberg-picture/index.pdc @@ -20,7 +20,7 @@ In the Schrödinger picture, the operators (observables) are fixed (as long as they do not depend on time), while the state $\ket{\psi_S(t)}$ changes according to the Schrödinger equation, which can be written using the generator of translations -$\hat{U}(t) = \exp{} (- i t \hat{H} / \hbar)$ like so: +$\hat{U}(t) = \exp\!(- i t \hat{H} / \hbar)$ like so: $$\begin{aligned} \ket{\psi_S(t)} = \hat{U}(t) \ket{\psi_S(0)} @@ -100,7 +100,7 @@ $$\begin{aligned} \end{aligned}$$ This equation is closer to classical mechanics than the Schrödinger picture: -inserting the position $\hat{X}$ and momentum $\hat{P} = - i \hbar \: d/d\hat{X}$ +inserting the position $\hat{X}$ and momentum $\hat{P} = - i \hbar \: \dv*{\hat{X}}$ gives the following Newton-style equations: $$\begin{aligned} diff --git a/content/know/concept/kubo-formula/index.pdc b/content/know/concept/kubo-formula/index.pdc new file mode 100644 index 0000000..9e52835 --- /dev/null +++ b/content/know/concept/kubo-formula/index.pdc @@ -0,0 +1,227 @@ +--- +title: "Kubo formula" +firstLetter: "K" +publishDate: 2021-09-23 +categories: +- Physics +- Quantum mechanics + +date: 2021-09-23T16:21:51+02:00 +draft: false +markup: pandoc +--- + +# Kubo formula + +Consider the following quantum Hamiltonian, +split into a main time-independent term $\hat{H}_{0,S}$ +and a small time-dependent perturbation $\hat{H}_{1,S}$, +which is turned on at $t = t_0$: + +$$\begin{aligned} + \hat{H}_S(t) + = \hat{H}_{0,S} + \hat{H}_{1,S}(t) +\end{aligned}$$ + +And let $\ket{\psi_S(t)}$ be the corresponding solutions to the Schrödinger equation. +Then, given a time-independent observable $\hat{A}$, +its expectation value $\expval*{\hat{A}}$ evolves like so, +where the subscripts $S$ and $I$ +respectively refer to the Schrödinger +and [interaction pictures](/know/concept/interaction-picture/): + +$$\begin{aligned} + \expval*{\hat{A}}(t) + = \matrixel{\psi_S(t)}{\hat{A}_S}{\psi_S(t)} + &= \matrixel{\psi_I(t)}{\hat{A}_I(t)}{\psi_I(t)} + \\ + &= \matrixel{\psi_I(t_0)}{\hat{K}_I^\dagger(t, t_0) \hat{A}_I(t) \hat{K}_I(t, t_0)}{\psi_I(t_0)} +\end{aligned}$$ + +Where the time evolution operator $\hat{K}_I(t, t_0)$ is as follows, +which we Taylor-expand: + +$$\begin{aligned} + \hat{K}_I(t, t_0) + = \mathcal{T} \bigg\{ \exp\!\bigg( \frac{1}{i \hbar} \int_{t_0}^t \hat{H}_{1,I}(t') \dd{t'} \bigg) \bigg\} + \approx 1 - \frac{i}{\hbar} \int_{t_0}^t \hat{H}_{1,I}(t') \dd{t'} +\end{aligned}$$ + +With this, the following product of operators (as encountered earlier) can be written as: + +$$\begin{aligned} + \hat{K}_I^\dagger \hat{A}_I \hat{K}_I + &\approx \bigg( 1 + \frac{i}{\hbar} \int_{t_0}^t \hat{H}_{1,I}(t') \dd{t'} \bigg) \hat{A}_I(t) + \bigg( 1 - \frac{i}{\hbar} \int_{t_0}^t \hat{H}_{1,I}(t') \dd{t'} \bigg) + \\ + %&= \bigg( \hat{A}_I + \frac{i}{\hbar} \int_{t_0}^t \hat{H}_{1,I}(t') \hat{A}_I \dd{t'} \bigg) + %\bigg( 1 - \frac{i}{\hbar} \int_{t_0}^t \hat{H}_{1,I}(t') \dd{t'} \bigg) + %\\ + &\approx \hat{A}_I(t) + - \frac{i}{\hbar} \int_{t_0}^t \hat{A}_I(t) \hat{H}_{1,I}(t') \dd{t'} + + \frac{i}{\hbar} \int_{t_0}^t \hat{H}_{1,I}(t') \hat{A}_I(t) \dd{t'} +\end{aligned}$$ + +Where we have dropped the last term, +because $\hat{H}_{1}$ is assumed to be so small +that it only matters to first order. +Here, we notice a commutator, so we can rewrite: + +$$\begin{aligned} + \hat{K}_I^\dagger \hat{A}_I \hat{K}_I + &= \hat{A}_I(t) - \frac{i}{\hbar} \int_{t_0}^t \comm{\hat{A}_I(t)}{\hat{H}_{1,I}(t')} \dd{t'} +\end{aligned}$$ + +Returning to $\expval*{\hat{A}}$, +we have the following formula, +where $\expval{}$ is the expectation value for $\ket{\psi(t)}$, +and $\expval{}_0$ is the expectation value for $\ket{\psi_I(t_0)}$: + +$$\begin{aligned} + \expval*{\hat{A}}(t) + = \expval*{\hat{K}_I^\dagger \hat{A}_I \hat{K}_I}_0 + = \expval*{\hat{A}_I(t)}_0 - \frac{i}{\hbar} \int_{t_0}^t \expval{\comm{\hat{A}_I(t)}{\hat{H}_{1,I}(t')}}_0 \dd{t'} +\end{aligned}$$ + +Now we define $\delta\expval*{\hat{A}}(t)$ +as the change of $\expval*{\hat{A}}$ due to the perturbation $\hat{H}_1$, +and insert $\expval*{\hat{A}}(t)$: + +$$\begin{aligned} + \delta\expval*{\hat{A}}(t) + \equiv \expval*{\hat{A}}(t) - \expval*{\hat{A}_I}_0 + = - \frac{i}{\hbar} \int_{t_0}^t \expval{\comm{\hat{A}_I(t)}{\hat{H}_{1,I}(t')}}_0 \dd{t'} +\end{aligned}$$ + +Finally, we introduce +a [Heaviside step function](/know/concept/heaviside-step-function) $\Theta$ +and change the integration limit accordingly, +leading to the **Kubo formula** +describing the response of $\expval*{\hat{A}}$ to first order in $\hat{H}_1$: + +$$\begin{aligned} + \boxed{ + \delta\expval*{\hat{A}}(t) + %= - \frac{i}{\hbar} \int_{t_0}^\infty \Theta(t \!-\! t') \expval{\comm{\hat{A}_I(t)}{\hat{H}_{1,I}(t')}}_0 \dd{t'} + = \int_{t_0}^\infty C^R_{A H_1}(t, t') \dd{t'} + } +\end{aligned}$$ + +Where we have defined the **retarded correlation function** $C^R_{A H_1}(t, t')$ as follows: + +$$\begin{aligned} + \boxed{ + C^R_{A H_1}(t, t') + \equiv - \frac{i}{\hbar} \Theta(t \!-\! t') \expval{\comm{\hat{A}_I(t)}{\hat{H}_{1,I}(t')}}_0 + } +\end{aligned}$$ + +This result applies to bosonic operators, +whereas for fermionic operators +the commutator would be replaced by an anticommutator. + +A common situation is that $\hat{H}_1$ consists of +a time-independent operator $\hat{B}$ +and a time-dependent function $f(t)$, +allowing us to split $C^R_{A H_1}$ as follows: + +$$\begin{aligned} + \hat{H}_{1,S}(t) + = \hat{B}_S \: f(t) + \quad \implies \quad + C^R_{A H_1}(t, t') + = C^R_{A B}(t, t') f(t') +\end{aligned}$$ + +Conveniently, it can be shown that in this case +$C^R_{AB}$ only depends on the difference $t - t'$, +if we assume that the system was initially in thermodynamic equilibrium: + +$$\begin{aligned} + C^R_{A B}(t, t') + = C^R_{A B}(t - t') +\end{aligned}$$ + +<div class="accordion"> +<input type="checkbox" id="proof-time-difference"/> +<label for="proof-time-difference">Proof</label> +<div class="hidden"> +<label for="proof-time-difference">Proof.</label> +This is trivial for $\Theta(t\!-\!t')$, +so the challenge is to prove that +$\expval*{\comm*{\hat{A}_I(t)}{B_I(t')}}$ +depends only on the time difference $t - t'$. + +Suppose that the system started in thermodynamic equilibrium +(see [canonical ensemble](/know/concept/canonical-ensemble/)), +so that its (unnormalized) [density operator](/know/concept/density-operator/) +$\hat{\rho}$ was as follows before $\hat{H}_{1,I}$ was applied: + +$$\begin{aligned} + \hat{\rho} = \exp\!(- \beta \hat{H}_{0,S}) +\end{aligned}$$ + +Let us assume that the perturbation $\hat{H}_{1,I}$ +does not affect the distribution of states, +but only their individual evolutions in time. +Note that, in general, this is not equilibrium. + +In that case, the expectation value of the product +of two time-independent observables $\hat{A}$ and $\hat{B}$ +can be calculated as follows, +where $Z_0 \equiv \Tr\!(\hat{\rho})$ is the partition function: + +$$\begin{aligned} + \expval*{\hat{A} \hat{B}} + = \frac{1}{Z_0} \Tr\!\big( \hat{\rho} \hat{A}_I \hat{H}_{1,I} \big) + = \frac{1}{Z_0} \Tr\!\Big( e^{-\beta \hat{H}_0} e^{i t \hat{H}_0 / \hbar} \hat{A}_S e^{-i t \hat{H}_0 / \hbar} + e^{i t' \hat{H}_0 / \hbar} \hat{B}_S e^{-i t' \hat{H}_0 / \hbar} \Big) +\end{aligned}$$ + +Where $\hat{H}_0 \equiv \hat{H}_{0,S}$ for brevity. +Using that the trace $\Tr$ is invariant +under cyclic permutations of its argument, +and that functions of $\hat{H}_{0,S}$ always commute, we find: + +$$\begin{aligned} + \expval*{\hat{A} \hat{B}} + = \frac{1}{Z_0} \Tr\!\Big( e^{-\beta \hat{H}_0} e^{i (t - t') \hat{H}_0 / \hbar} \hat{A}_S + e^{-i (t - t') \hat{H}_0 / \hbar} \hat{B}_S \Big) +\end{aligned}$$ + +As expected, this clearly only depends on the time difference $t - t'$, +because $\hat{H}_{0,S}$ is time-independent by assumption. +</div> +</div> + +With this, the Kubo formula can be written as follows, +where we have set $t_0 = - \infty$: + +$$\begin{aligned} + \delta\expval*{A}(t) + = \int_{-\infty}^\infty C^R_{A B}(t - t') f(t') \dd{t'} + = (C^R_{A B} * f)(t) +\end{aligned}$$ + +This is a convolution, +so the [convolution theorem](/know/concept/convolution-theorem/) +states that the [Fourier transform](/know/concept/fourier-transform/) +of $\delta\expval*{\hat{A}}(t)$ is simply the product +of the transforms of $C^R_{AB}$ and $f$: + +$$\begin{aligned} + \boxed{ + \delta\expval*{\hat{A}}(\omega) + = \tilde{C}{}^R_{A B}(\omega) \: \tilde{f}(\omega) + } +\end{aligned}$$ + + + +## References +1. H. Bruus, K. Flensberg, + *Many-body quantum theory in condensed matter physics*, + 2016, Oxford. +2. K.S. Thygesen, + *Linear response theory*, + 2013, unpublished. |