summaryrefslogtreecommitdiff
path: root/content/know/concept/archimedes-principle/index.pdc
diff options
context:
space:
mode:
authorPrefetch2021-04-15 20:53:17 +0200
committerPrefetch2021-04-15 20:53:17 +0200
commit8f883023e6354648727479aec029f418b30ef2dc (patch)
tree7a45e762f8a804f1f703462fd44dae40b263585f /content/know/concept/archimedes-principle/index.pdc
parent71b9e1aa3050dd492761973ad4be73c6d65e7eb1 (diff)
Expand knowledge base
Diffstat (limited to 'content/know/concept/archimedes-principle/index.pdc')
-rw-r--r--content/know/concept/archimedes-principle/index.pdc22
1 files changed, 12 insertions, 10 deletions
diff --git a/content/know/concept/archimedes-principle/index.pdc b/content/know/concept/archimedes-principle/index.pdc
index 6335a77..0837cc9 100644
--- a/content/know/concept/archimedes-principle/index.pdc
+++ b/content/know/concept/archimedes-principle/index.pdc
@@ -44,16 +44,19 @@ on the surface $S$ of $V$:
$$\begin{aligned}
\va{F}_p
= - \oint_S p \dd{\va{S}}
+ = - \int_V \nabla p \dd{V}
\end{aligned}$$
-We rewrite this using Gauss' theorem,
-and replace $\nabla p$ by demanding
-[hydrostatic equilibrium](/know/concept/hydrostatic-pressure/):
+The last step follows from Gauss' theorem.
+We replace $\nabla p$ by assuming
+[hydrostatic equilibrium](/know/concept/hydrostatic-pressure/),
+leading to the definition of the **buoyant force**:
$$\begin{aligned}
- \va{F}_p
- = - \int_V \nabla p \dd{V}
- = - \int_V \va{g} \rho_\mathrm{f} \dd{V}
+ \boxed{
+ \va{F}_p
+ = - \int_V \va{g} \rho_\mathrm{f} \dd{V}
+ }
\end{aligned}$$
For the body to be at rest, we require $\va{F}_g + \va{F}_p = 0$.
@@ -66,10 +69,9 @@ $$\begin{aligned}
}
\end{aligned}$$
-It is commonly assumed that $\va{g}$ has a constant direction
-and magnitude $\mathrm{g}$ everywhere.
-If we also assume that $\rho_\mathrm{b}$ and $\rho_\mathrm{f}$ are constant,
-and only integrate over the "submerged" part, we find:
+It is commonly assumed that $\va{g}$ is constant everywhere, with magnitude $\mathrm{g}$.
+If we also assume that $\rho_\mathrm{f}$ is constant on the "submerged" side,
+and zero on the "non-submerged" side, we find:
$$\begin{aligned}
0