summaryrefslogtreecommitdiff
path: root/content/know/concept/bell-state/index.pdc
diff options
context:
space:
mode:
authorPrefetch2021-03-10 15:26:15 +0100
committerPrefetch2021-03-10 15:26:15 +0100
commitc4ec16c8b34f84f0e95d2988df083c6d31ba21ef (patch)
treecc5e186f23fe8e18743f6adc6e1499faf84e7e43 /content/know/concept/bell-state/index.pdc
parent540d23bff03bedbc8f68287d71c8b5e7dc54b054 (diff)
Expand knowledge base
Diffstat (limited to 'content/know/concept/bell-state/index.pdc')
-rw-r--r--content/know/concept/bell-state/index.pdc93
1 files changed, 93 insertions, 0 deletions
diff --git a/content/know/concept/bell-state/index.pdc b/content/know/concept/bell-state/index.pdc
new file mode 100644
index 0000000..5e147e2
--- /dev/null
+++ b/content/know/concept/bell-state/index.pdc
@@ -0,0 +1,93 @@
+---
+title: "Bell state"
+firstLetter: "B"
+publishDate: 2021-03-09
+categories:
+- Quantum mechanics
+- Quantum information
+
+date: 2021-03-09T17:31:29+01:00
+draft: false
+markup: pandoc
+---
+
+# Bell state
+
+In quantum information, the **Bell states** are a set of four two-qubit states
+which are simple and useful examples of [quantum entanglement](/know/concept/quantum-entanglement/).
+They are given by:
+
+$$\begin{aligned}
+ \boxed{
+ \begin{aligned}
+ \ket*{\Phi^{\pm}}
+ &= \frac{1}{\sqrt{2}} \Big( \ket{0}_A \ket{0}_B \pm \ket{1}_A \ket{1}_B \Big)
+ \\
+ \ket*{\Psi^{\pm}}
+ &= \frac{1}{\sqrt{2}} \Big( \ket{0}_A \ket{1}_B \pm \ket{1}_A \ket{0}_B \Big)
+ \end{aligned}
+ }
+\end{aligned}$$
+
+Where e.g. $\ket{0}_A \ket{1}_B = \ket{0}_A \otimes \ket{1}_B$
+is the tensor product of qubit $A$ in state $\ket{0}$ and $B$ in $\ket{1}$.
+These states form an orthonormal basis for the two-qubit
+[Hilbert space](/know/concept/hilbert-space/).
+
+More importantly, however,
+is that the Bell states are maximally entangled,
+which we prove here for $\ket*{\Phi^{+}}$.
+Consider the following pure [density operator](/know/concept/density-operator/):
+
+$$\begin{aligned}
+ \hat{\rho}
+ = \ket*{\Phi^{+}} \bra*{\Phi^{+}}
+ &= \frac{1}{2} \Big( \ket{0}_A \ket{0}_B + \ket{1}_A \ket{1}_B \Big) \Big( \bra{0}_A \bra{0}_B + \bra{1}_A \bra{1}_B \Big)
+\end{aligned}$$
+
+The reduced density operator $\hat{\rho}_A$ of qubit $A$ is then calculated as follows:
+
+$$\begin{aligned}
+ \hat{\rho}_A
+ &= \Tr_B(\hat{\rho})
+ = \sum_{b = 0, 1} \bra{b}_B \Big( \ket*{\Phi^{+}} \bra*{\Phi^{+}} \Big) \ket{b}_B
+ \\
+ &= \sum_{b = 0, 1} \Big( \ket{0}_A \braket{b}{0}_B + \ket{1}_A \braket{b}{1}_B \Big)
+ \Big( \bra{0}_A \braket{0}{b}_B + \bra{1}_A \braket{1}{b}_B \Big)
+ \\
+ &= \frac{1}{2} \Big( \ket{0}_A \bra{0}_A + \ket{1}_A \bra{1}_A \Big)
+ = \frac{1}{2} \hat{I}
+\end{aligned}$$
+
+This result is maximally mixed, therefore $\ket*{\Phi^{+}}$ is maximally entangled.
+The same holds for the other three Bell states,
+and is equally true for qubit $B$.
+
+This means that a measurement of qubit $A$
+has a 50-50 chance to yield $\ket{0}$ or $\ket{1}$.
+However, due to the entanglement,
+measuring $A$ also has consequences for qubit $B$:
+
+$$\begin{aligned}
+ \big| \bra{0}_A \bra{0}_B \: \ket*{\Phi^{+}} \big|^2
+ &= \frac{1}{2} \Big( \braket{0}{0}_A \braket{0}{0}_B + \braket{0}{1}_A \braket{0}{1}_B \Big)^2
+ = \frac{1}{2}
+ \\
+ \big| \bra{0}_A \bra{1}_B \: \ket*{\Phi^{+}} \big|^2
+ &= \frac{1}{2} \Big( \braket{0}{0}_A \braket{1}{0}_B + \braket{0}{1}_A \braket{1}{1}_B \Big)^2
+ = 0
+ \\
+ \big| \bra{1}_A \bra{0}_B \: \ket*{\Phi^{+}} \big|^2
+ &= \frac{1}{2} \Big( \braket{1}{0}_A \braket{0}{0}_B + \braket{1}{1}_A \braket{0}{1}_B \Big)^2
+ = 0
+ \\
+ \big| \bra{1}_A \bra{1}_B \: \ket*{\Phi^{+}} \big|^2
+ &= \frac{1}{2} \Big( \braket{1}{0}_A \braket{1}{0}_B + \braket{1}{1}_A \braket{1}{1}_B \Big)^2
+ = \frac{1}{2}
+\end{aligned}$$
+
+As an example, if $A$ collapses into $\ket{0}$ due to a measurement,
+then $B$ instantly also collapses into $\ket{0}$, never $\ket{1}$,
+even if it was not measured.
+This was a specific example for $\ket*{\Phi^{+}}$,
+but analogous results can be found for the other Bell states.