diff options
author | Prefetch | 2021-03-10 15:26:15 +0100 |
---|---|---|
committer | Prefetch | 2021-03-10 15:26:15 +0100 |
commit | c4ec16c8b34f84f0e95d2988df083c6d31ba21ef (patch) | |
tree | cc5e186f23fe8e18743f6adc6e1499faf84e7e43 /content/know/concept/central-limit-theorem | |
parent | 540d23bff03bedbc8f68287d71c8b5e7dc54b054 (diff) |
Expand knowledge base
Diffstat (limited to 'content/know/concept/central-limit-theorem')
-rw-r--r-- | content/know/concept/central-limit-theorem/index.pdc | 208 |
1 files changed, 208 insertions, 0 deletions
diff --git a/content/know/concept/central-limit-theorem/index.pdc b/content/know/concept/central-limit-theorem/index.pdc new file mode 100644 index 0000000..270bb0b --- /dev/null +++ b/content/know/concept/central-limit-theorem/index.pdc @@ -0,0 +1,208 @@ +--- +title: "Central limit theorem" +firstLetter: "C" +publishDate: 2021-03-09 +categories: +- Statistics + +date: 2021-03-09T20:39:38+01:00 +draft: false +markup: pandoc +--- + +# Central limit theorem + +In statistics, the **central limit theorem** states that +the sum of many independent variables tends towards a normal distribution, +even if the individual variables $x_n$ follow different distributions. + +For example, by taking $M$ samples of size $N$ from a population, +and calculating $M$ averages $\mu_m$ (which involves summing over $N$), +the resulting means $\mu_m$ are normally distributed +across the $M$ samples if $N$ is sufficiently large. + +More formally, for $N$ independent variables $x_n$ with probability distributions $p(x_n)$, +the central limit theorem states the following, +where we define the sum $S$: + +$$\begin{aligned} + S = \sum_{n = 1}^N x_n + \qquad + \mu_S = \sum_{n = 1}^N \mu_n + \qquad + \sigma_S^2 = \sum_{n = 1}^N \sigma_n^2 +\end{aligned}$$ + +And crucially, it states that the probability distribution $p_N(S)$ of $S$ for $N$ variables +will become a normal distribution when $N$ goes to infinity: + +$$\begin{aligned} + \boxed{ + \lim_{N \to \infty} \!\big(p_N(S)\big) + = \frac{1}{\sigma_S \sqrt{2 \pi}} \: \exp\!\Big( -\frac{(\mu_S - S)^2}{2 \sigma_S^2} \Big) + } +\end{aligned}$$ + +We prove this below, +but first we need to introduce some tools. +Given a probability density $p(x)$, its [Fourier transform](/know/concept/fourier-transform/) +is called the **characteristic function** $\phi(k)$: + +$$\begin{aligned} + \phi(k) = \int_{-\infty}^\infty p(x) \exp(i k x) \dd{x} +\end{aligned}$$ + +Note that $\phi(k)$ can be interpreted as the average of $\exp(i k x)$. +We take its Taylor expansion in two separate ways, +where an overline denotes the mean: + +$$\begin{aligned} + \phi(k) + = \sum_{n = 0}^\infty \frac{k^n}{n!} \: \phi^{(n)}(0) + \qquad + \phi(k) + = \overline{\exp(i k x)} = \sum_{n = 0}^\infty \frac{(ik)^n}{n!} \overline{x^n} +\end{aligned}$$ + +By comparing the coefficients of these two power series, +we get a useful relation: + +$$\begin{aligned} + \phi^{(n)}(0) = i^n \: \overline{x^n} +\end{aligned}$$ + +Next, the **cumulants** $C^{(n)}$ are defined from the Taylor expansion of $\ln\!\big(\phi(k)\big)$: + +$$\begin{aligned} + \ln\!\big( \phi(k) \big) + = \sum_{n = 1}^\infty \frac{(ik)^n}{n!} C^{(n)} + \quad \mathrm{where} \quad + C^{(n)} = \frac{1}{i^n} \: \dv[n]{k} \Big(\ln\!\big(\phi(k)\big)\Big) \big|_{k = 0} +\end{aligned}$$ + +The first two cumulants $C^{(1)}$ and $C^{(2)}$ are of particular interest, +since they turn out to be the mean and the variance respectively, +using our earlier relation: + +$$\begin{aligned} + C^{(1)} + &= - i \dv{k} \Big(\ln\!\big(\phi(k)\big)\Big) \big|_{k = 0} + = - i \frac{\phi'(0)}{\exp(0)} + = \overline{x} + \\ + C^{(2)} + &= - \dv[2]{k} \Big(\ln\!\big(\phi(k)\big)\Big) \big|_{k = 0} + = \frac{\big(\phi'(0)\big)^2}{\exp(0)^2} - \frac{\phi''(0)}{\exp(0)} + = - \overline{x}^2 + \overline{x^2} = \sigma^2 +\end{aligned}$$ + +Let us now define $S$ as the sum of $N$ independent variables $x_n$, in other words: + +$$\begin{aligned} + S = \sum_{n = 1}^N x_n = x_1 + x_2 + ... + x_N +\end{aligned}$$ + +The probability density of $S$ is then as follows, where $p(x_n)$ are +the densities of all the individual variables and $\delta$ is +the [Dirac delta function](/know/concept/dirac-delta-function/): + +$$\begin{aligned} + p(S) + &= \idotsint_{-\infty}^\infty \Big( \prod_{n = 1}^N p(x_n) \Big) \: \delta\Big( S - \sum_{n = 1}^N x_n \Big) \dd{x_1} \cdots \dd{x_N} + \\ + &= \Big( p_1 * \big( p_2 * ( ... * (p_N * \delta))\big)\Big)(S) +\end{aligned}$$ + +In other words, the integrals pick out all combinations of $x_n$ which +add up to the desired $S$-value, and multiply the probabilities +$p(x_1) p(x_2) \cdots p(x_N)$ of each such case. This is a convolution, +so the [convolution theorem](/know/concept/convolution-theorem/) +states that it is a product in the Fourier domain: + +$$\begin{aligned} + \phi_S(k) = \prod_{n = 1}^N \phi_n(k) +\end{aligned}$$ + +By taking the logarithm of both sides, the product becomes a sum, +which we further expand: + +$$\begin{aligned} + \ln\!\big(\phi_S(k)\big) + = \sum_{n = 1}^N \ln\!\big(\phi_n(k)\big) + = \sum_{n = 1}^N \sum_{m = 1}^{\infty} \frac{(ik)^m}{m!} C_n^{(m)} +\end{aligned}$$ + +Consequently, the cumulants $C^{(m)}$ stack additively for the sum $S$ +of independent variables $x_m$, and therefore +the means $C^{(1)}$ and variances $C^{(2)}$ do too: + +$$\begin{aligned} + C_S^{(m)} = \sum_{n = 1}^N C_n^{(m)} = C_1^{(m)} + C_2^{(m)} + ... + C_N^{(m)} +\end{aligned}$$ + +We now introduce the scaled sum $z$ as the new combined variable: + +$$\begin{aligned} + z = \frac{S}{\sqrt{N}} = \frac{1}{\sqrt{N}} (x_1 + x_2 + ... + x_N) +\end{aligned}$$ + +Its characteristic function $\phi_z(k)$ is then as follows, +with $\sqrt{N}$ appearing in the arguments of $\phi_n$: + +$$\begin{aligned} + \phi_z(k) + &= \idotsint + \Big( \prod_{n = 1}^N p(x_n) \Big) \: \delta\Big( z - \frac{1}{\sqrt{N}} \sum_{n = 1}^N x_n \Big) \exp(i k z) + \dd{x_1} \cdots \dd{x_N} + \\ + &= \idotsint + \Big( \prod_{n = 1}^N p(x_n) \Big) \exp\!\Big( i \frac{k}{\sqrt{N}} \sum_{n = 1}^N x_n \Big) + \dd{x_1} \cdots \dd{x_N} + \\ + &= \prod_{n = 1}^N \phi_n\Big(\frac{k}{\sqrt{N}}\Big) +\end{aligned}$$ + +By expanding $\ln\!\big(\phi_z(k)\big)$ in terms of its cumulants $C^{(m)}$ +and introducing $\kappa = k / \sqrt{N}$, we see that the higher-order terms +become smaller for larger $N$: + +$$\begin{gathered} + \ln\!\big( \phi_z(k) \big) + = \sum_{m = 1}^\infty \frac{(ik)^m}{m!} C^{(m)} + \\ + C^{(m)} + = \frac{1}{i^m} \dv[m]{k} \sum_{n = 1}^N \ln\!\bigg( \phi_n\Big(\frac{k}{\sqrt{N}}\Big) \bigg) + = \frac{1}{i^m N^{m/2}} \dv[m]{\kappa} \sum_{n = 1}^N \ln\!\big( \phi_n(\kappa) \big) +\end{gathered}$$ + +For sufficiently large $N$, we can therefore approximate it using just the first two terms: + +$$\begin{aligned} + \ln\!\big( \phi_z(k) \big) + &\approx i k C^{(1)} - \frac{k^2}{2} C^{(2)} + = i k \overline{z} - \frac{k^2}{2} \sigma_z^2 + \\ + \phi_z(k) + &\approx \exp(i k \overline{z}) \exp\!(- k^2 \sigma_z^2 / 2) +\end{aligned}$$ + +We take its inverse Fourier transform to get the density $p(z)$, +which turns out to be a Gaussian normal distribution, +which is even already normalized: + +$$\begin{aligned} + p(z) + = \hat{\mathcal{F}}^{-1} \{\phi_z(k)\} + &= \frac{1}{2 \pi} \int_{-\infty}^\infty \exp\!\big(\!-\! i k (z - \overline{z})\big) \exp(- k^2 \sigma_z^2 / 2) \dd{k} + \\ + &= \frac{1}{\sqrt{2 \pi \sigma_z^2}} \exp\!\Big(\!-\! \frac{(z - \overline{z})^2}{2 \sigma_z^2} \Big) +\end{aligned}$$ + +Therefore, the sum of many independent variables tends to a normal distribution, +regardless of the densities of the individual variables. + + +## References +1. H. Gould, J. Tobochnik, + *Statistical and thermal physics*, 2nd edition, + Princeton. |