summaryrefslogtreecommitdiff
path: root/content/know/concept/ghz-paradox/index.pdc
diff options
context:
space:
mode:
authorPrefetch2021-03-30 17:17:39 +0200
committerPrefetch2021-03-30 17:17:39 +0200
commit06e2d1f11d2d390c3f31e4ad9cfe28ff039d075f (patch)
treeb23dedd764c62860b025eb20b4b2f2aff90ca574 /content/know/concept/ghz-paradox/index.pdc
parent922a0bbeb81f9a0297c6a728d243cbec75cf9c3b (diff)
Expand knowledge base
Diffstat (limited to 'content/know/concept/ghz-paradox/index.pdc')
-rw-r--r--content/know/concept/ghz-paradox/index.pdc121
1 files changed, 121 insertions, 0 deletions
diff --git a/content/know/concept/ghz-paradox/index.pdc b/content/know/concept/ghz-paradox/index.pdc
new file mode 100644
index 0000000..4b872d8
--- /dev/null
+++ b/content/know/concept/ghz-paradox/index.pdc
@@ -0,0 +1,121 @@
+---
+title: "GHZ paradox"
+firstLetter: "G"
+publishDate: 2021-03-29
+categories:
+- Physics
+- Quantum mechanics
+- Quantum information
+
+date: 2021-03-29T15:15:41+02:00
+draft: false
+markup: pandoc
+---
+
+# GHZ Paradox
+
+The **Greenberger-Horne-Zeilinger** or **GHZ paradox**
+is an alternative proof of [Bell's theorem](/know/concept/bells-theorem/)
+that does not use inequalities,
+but the three-particle entangled **GHZ state** $\ket{\mathrm{GHZ}}$ instead,
+
+$$\begin{aligned}
+ \boxed{
+ \ket{\mathrm{GHZ}}
+ = \frac{1}{\sqrt{2}} \Big( \ket{000} + \ket{111} \Big)
+ }
+\end{aligned}$$
+
+Where $\ket{0}$ and $\ket{1}$ are qubit states,
+for example, the eigenvalues of the Pauli matrix $\hat{\sigma}_z$.
+
+If we now apply certain products of the Pauli matrices $\hat{\sigma}_x$ and $\hat{\sigma}_y$
+to the three particles, we find:
+
+
+$$\begin{aligned}
+ \hat{\sigma}_x \otimes \hat{\sigma}_x \otimes \hat{\sigma}_x \ket{\mathrm{GHZ}}
+ &= \frac{1}{\sqrt{2}} \Big( \hat{\sigma}_x \ket{0} \otimes \hat{\sigma}_x \ket{0} \otimes \hat{\sigma}_x \ket{0}
+ + \hat{\sigma}_x \ket{1} \otimes \hat{\sigma}_x \ket{1} \otimes \hat{\sigma}_x \ket{1} \Big)
+ \\
+ &= \frac{1}{\sqrt{2}} \Big( \ket{1} \otimes \ket{1} \otimes \ket{1} + \ket{0} \otimes \ket{0} \otimes \ket{0} \Big)
+ = \ket{\mathrm{GHZ}}
+ \\
+ \hat{\sigma}_x \otimes \hat{\sigma}_y \otimes \hat{\sigma}_y \ket{\mathrm{GHZ}}
+ &= \frac{1}{\sqrt{2}} \Big( \hat{\sigma}_x \ket{0} \otimes \hat{\sigma}_y \ket{0} \otimes \hat{\sigma}_y \ket{0}
+ + \hat{\sigma}_x \ket{1} \otimes \hat{\sigma}_y \ket{1} \otimes \hat{\sigma}_y \ket{1} \Big)
+ \\
+ &= \frac{1}{\sqrt{2}} \Big( \ket{1} \otimes i \ket{1} \otimes i \ket{1} + \ket{0} \otimes i \ket{0} \otimes i \ket{0} \Big)
+ = - \ket{\mathrm{GHZ}}
+\end{aligned}$$
+
+In other words, the GHZ state is a simultaneous eigenstate of these composite operators,
+with eigenvalues $+1$ and $-1$, respectively.
+Let us introduce two other product operators,
+such that we have a set of four observables,
+for which $\ket{\mathrm{GHZ}}$ gives these eigenvalues:
+
+$$\begin{aligned}
+ \hat{\sigma}_x \otimes \hat{\sigma}_x \otimes \hat{\sigma}_x
+ \quad &\implies \quad +1
+ \\
+ \hat{\sigma}_x \otimes \hat{\sigma}_y \otimes \hat{\sigma}_y
+ \quad &\implies \quad -1
+ \\
+ \hat{\sigma}_y \otimes \hat{\sigma}_x \otimes \hat{\sigma}_y
+ \quad &\implies \quad -1
+ \\
+ \hat{\sigma}_y \otimes \hat{\sigma}_y \otimes \hat{\sigma}_x
+ \quad &\implies \quad -1
+\end{aligned}$$
+
+According to any local hidden variable (LHV) theory,
+the measurement outcomes of the operators are predetermined,
+and the three particles $A$, $B$ and $C$ can be measured separately,
+or in other words, the eigenvalues can be factorized:
+
+$$\begin{aligned}
+ \hat{\sigma}_x \otimes \hat{\sigma}_x \otimes \hat{\sigma}_x
+ \quad &\implies \quad +1 = m_x^A m_x^B m_x^C
+ \\
+ \hat{\sigma}_x \otimes \hat{\sigma}_y \otimes \hat{\sigma}_y
+ \quad &\implies \quad -1 = m_x^A m_y^B m_y^C
+ \\
+ \hat{\sigma}_y \otimes \hat{\sigma}_x \otimes \hat{\sigma}_y
+ \quad &\implies \quad -1 = m_y^A m_x^B m_y^C
+ \\
+ \hat{\sigma}_y \otimes \hat{\sigma}_y \otimes \hat{\sigma}_x
+ \quad &\implies \quad -1 = m_y^A m_y^B m_x^C
+\end{aligned}$$
+
+Where $m_x^A = \pm 1$ etc.
+Let us now multiply both sides of these four equations together:
+
+$$\begin{aligned}
+ (+1) (-1) (-1) (-1)
+ &= (m_x^A m_x^B m_x^C) (m_x^A m_y^B m_y^C) (m_y^A m_x^B m_y^C) (m_y^A m_y^B m_x^C)
+ \\
+ -1
+ &= (m_x^A)^2 (m_x^B)^2 (m_x^C)^2 (m_y^A)^2 (m_y^B)^2 (m_y^C)^2
+\end{aligned}$$
+
+This is a contradiction: the left-hand side is $-1$,
+but all six factors on the right are $+1$.
+This means that we must have made an incorrect assumption along the way.
+
+Our only assumption was that we could factorize the eigenvalues,
+so that e.g. particle $A$ could be measured on its own
+without an "action-at-a-distance" effect on $B$ or $C$.
+However, because that leads us to a contradiction,
+we must conclude that action-at-a-distance exists,
+and that therefore all LHV-based theories are invalid.
+
+
+
+## References
+1. N. Brunner,
+ *Quantum information theory: lecture notes*,
+ 2019, unpublished.
+2. J.B. Brask,
+ *Quantum information: lecture notes*,
+ 2021, unpublished.