summaryrefslogtreecommitdiff
path: root/content/know/concept/impulse-response/index.pdc
diff options
context:
space:
mode:
authorPrefetch2021-03-10 15:26:15 +0100
committerPrefetch2021-03-10 15:26:15 +0100
commitc4ec16c8b34f84f0e95d2988df083c6d31ba21ef (patch)
treecc5e186f23fe8e18743f6adc6e1499faf84e7e43 /content/know/concept/impulse-response/index.pdc
parent540d23bff03bedbc8f68287d71c8b5e7dc54b054 (diff)
Expand knowledge base
Diffstat (limited to 'content/know/concept/impulse-response/index.pdc')
-rw-r--r--content/know/concept/impulse-response/index.pdc64
1 files changed, 64 insertions, 0 deletions
diff --git a/content/know/concept/impulse-response/index.pdc b/content/know/concept/impulse-response/index.pdc
new file mode 100644
index 0000000..012a2c3
--- /dev/null
+++ b/content/know/concept/impulse-response/index.pdc
@@ -0,0 +1,64 @@
+---
+title: "Impulse response"
+firstLetter: "I"
+publishDate: 2021-03-09
+categories:
+- Mathematics
+- Physics
+
+date: 2021-03-09T20:34:38+01:00
+draft: false
+markup: pandoc
+---
+
+# Impulse response
+
+The **impulse response** $u_p(t)$ of a system whose behaviour is described
+by a linear operator $\hat{L}$, is defined as the reponse of the system
+when forced by the [Dirac delta function](/know/concept/dirac-delta-function/) $\delta(t)$:
+
+$$\begin{aligned}
+ \boxed{
+ \hat{L} \{ u_p(t) \} = \delta(t)
+ }
+\end{aligned}$$
+
+This can be used to find the response $u(t)$ of $\hat{L}$ to
+*any* forcing function $f(t)$, i.e. not only $\delta(t)$,
+by simply taking the convolution with $u_p(t)$:
+
+$$\begin{aligned}
+ \boxed{
+ \hat{L} \{ u(t) \} = f(t)
+ \quad \implies \quad
+ u(t) = (f * u_p)(t)
+ }
+\end{aligned}$$
+
+*__Proof.__ Starting from the definition of $u_p(t)$,
+we shift the argument by some constant $\tau$,
+and multiply both sides by the constant $f(\tau)$:*
+
+$$\begin{aligned}
+ \hat{L} \{ u_p(t - \tau) \} &= \delta(t - \tau)
+ \\
+ \hat{L} \{ f(\tau) \: u_p(t - \tau) \} &= f(\tau) \: \delta(t - \tau)
+\end{aligned}$$
+
+*Where $f(\tau)$ can be moved inside using the
+linearity of $\hat{L}$. Integrating over $\tau$ then gives us:*
+
+$$\begin{aligned}
+ \int_0^\infty \hat{L} \{ f(\tau) \: u_p(t - \tau) \} \dd{\tau}
+ &= \int_0^\infty f(\tau) \: \delta(t - \tau) \dd{\tau}
+ = f(t)
+\end{aligned}$$
+
+*The integral and $\hat{L}$ are operators of different variables, so we reorder them:*
+
+$$\begin{aligned}
+ \hat{L} \int_0^\infty f(\tau) \: u_p(t - \tau) \dd{\tau}
+ &= (f * u_p)(t) = \hat{L}\{ u(t) \} = f(t)
+\end{aligned}$$
+
+*__Q.E.D.__*