diff options
author | Prefetch | 2021-11-28 17:15:39 +0100 |
---|---|---|
committer | Prefetch | 2021-11-28 17:15:39 +0100 |
commit | 61271b92a793dd837d8326c7064cebd0a3fcdb39 (patch) | |
tree | e49c7e017a9ce189806c34109aa2164138f95ac0 /content/know/concept/kolmogorov-equations/index.pdc | |
parent | eccfe8c4eb562ab7ddeddaf48f73e59c9dcdc284 (diff) |
Expand knowledge base
Diffstat (limited to 'content/know/concept/kolmogorov-equations/index.pdc')
-rw-r--r-- | content/know/concept/kolmogorov-equations/index.pdc | 43 |
1 files changed, 43 insertions, 0 deletions
diff --git a/content/know/concept/kolmogorov-equations/index.pdc b/content/know/concept/kolmogorov-equations/index.pdc index 331d803..a3b11db 100644 --- a/content/know/concept/kolmogorov-equations/index.pdc +++ b/content/know/concept/kolmogorov-equations/index.pdc @@ -5,6 +5,7 @@ publishDate: 2021-11-14 categories: - Mathematics - Statistics +- Stochastic analysis date: 2021-11-13T21:05:30+01:00 draft: false @@ -201,6 +202,48 @@ $$\begin{aligned} } \end{aligned}$$ +This can be rewritten in a way +that highlights the connection between Itō diffusions and physical diffusion, +if we define the **diffusivity** $D$, **advection** $u$, and **probability flux** $J$: + +$$\begin{aligned} + D + \equiv \frac{1}{2} g^2 + \qquad \quad + u + = f - \pdv{D}{x} + \qquad \quad + J + \equiv u \phi - D \pdv{\phi}{x} +\end{aligned}$$ + +Such that the forward Kolmogorov equation takes the following **conservative form**, +so called because it looks like a physical continuity equation: + +$$\begin{aligned} + \boxed{ + \pdv{\phi}{t} + = - \pdv{J}{x} + = - \pdv{x} \Big( u \phi - D \pdv{\phi}{x} \Big) + } +\end{aligned}$$ + +Note that if $u = 0$, then this reduces to +[Fick's second law](/know/concept/ficks-laws/). +The backward Kolmogorov equation can also be rewritten analogously, +although it is less noteworthy: + +$$\begin{aligned} + \boxed{ + - \pdv{\psi}{t} + = u \pdv{\psi}{x} + \pdv{x} \Big( D \pdv{\psi}{x} \Big) + } +\end{aligned}$$ + +Notice that the diffusivity term looks the same +in both the forward and backward equations; +we say that diffusion is self-adjoint. + ## References |