summaryrefslogtreecommitdiff
path: root/content/know/concept/no-cloning-theorem/index.pdc
diff options
context:
space:
mode:
authorPrefetch2021-03-06 19:27:57 +0100
committerPrefetch2021-03-06 19:27:57 +0100
commit7bf913f9bc7ab9f8f03c5530d245cf95e1edb43e (patch)
tree5d6e96e882cba2c48a29b70367acafd30ea5b1be /content/know/concept/no-cloning-theorem/index.pdc
parent9d741c2c762d8b629cef5ac5fbc26ca44c345a77 (diff)
Expand knowledge base
Diffstat (limited to 'content/know/concept/no-cloning-theorem/index.pdc')
-rw-r--r--content/know/concept/no-cloning-theorem/index.pdc71
1 files changed, 71 insertions, 0 deletions
diff --git a/content/know/concept/no-cloning-theorem/index.pdc b/content/know/concept/no-cloning-theorem/index.pdc
new file mode 100644
index 0000000..e253464
--- /dev/null
+++ b/content/know/concept/no-cloning-theorem/index.pdc
@@ -0,0 +1,71 @@
+---
+title: "No-cloning theorem"
+firstLetter: "N"
+publishDate: 2021-03-06
+categories:
+- Physics
+- Quantum mechanics
+- Quantum information
+
+date: 2021-03-06T09:45:32+01:00
+draft: false
+markup: pandoc
+---
+
+# No-cloning theorem
+
+In quantum mechanics, the **no-cloning theorem** states
+there is no general way to make copies of an arbitrary quantum state $\ket{\psi}$.
+This has profound implications for quantum information.
+
+To prove this theorem, let us pretend that a machine exists
+that can do just that: copy arbitrary quantum states.
+Given an input $\ket{\psi}$ and a blank $\ket{?}$,
+this machines turns $\ket{?}$ into $\ket{\psi}$:
+
+$$\begin{aligned}
+ \ket{\psi} \ket{?}
+ \:\:\longrightarrow\:\:
+ \ket{\psi} \ket{\psi}
+\end{aligned}$$
+
+We can use this device to make copies of the basis vectors $\ket{0}$ and $\ket{1}$:
+
+$$\begin{aligned}
+ \ket{0} \ket{?}
+ \:\:\longrightarrow\:\:
+ \ket{0} \ket{0}
+ \qquad \quad
+ \ket{1} \ket{?}
+ \:\:\longrightarrow\:\:
+ \ket{1} \ket{1}
+\end{aligned}$$
+
+If we feed this machine a superposition $\ket{\psi} = \alpha \ket{0} + \beta \ket{1}$,
+we *want* the following behaviour:
+
+$$\begin{aligned}
+ \Big( \alpha \ket{0} + \beta \ket{1} \Big) \ket{?}
+ \:\:\longrightarrow\:\:
+ &\Big( \alpha \ket{0} + \beta \ket{1} \Big) \Big( \alpha \ket{0} + \beta \ket{1} \Big)
+ \\
+ &= \Big( \alpha^2 \ket{0} \ket{0} + \alpha \beta \ket{0} \ket{1} + \alpha \beta \ket{1} \ket{0} + \beta^2 \ket{1} \ket{1} \Big)
+\end{aligned}$$
+
+Note the appearance of the cross terms with a factor of $\alpha \beta$.
+The problem is that the fundamental linearity of quantum mechanics
+dictates different behaviour:
+
+$$\begin{aligned}
+ \Big( \alpha \ket{0} + \beta \ket{1} \Big) \ket{?}
+ = \alpha \ket{0} \ket{?} + \beta \ket{1} \ket{?}
+ \:\:\longrightarrow\:\:
+ \alpha \ket{0} \ket{0} + \beta \ket{1} \ket{1}
+\end{aligned}$$
+
+This is clearly not the same as before: we have a contradiction,
+which implies that such a general cloning machine cannot ever exist.
+
+
+## References
+1. N. Brunner, *Quantum information theory: lecture notes*, 2019.