summaryrefslogtreecommitdiff
path: root/content/know/concept/optical-wave-breaking/index.pdc
diff options
context:
space:
mode:
authorPrefetch2021-03-01 11:45:21 +0100
committerPrefetch2021-03-01 11:45:21 +0100
commit20e7c96c35b922252e17fd5fc9ff0407d9bd30ca (patch)
tree540108e358c2b6906f405bf85022eab6573b5d91 /content/know/concept/optical-wave-breaking/index.pdc
parent8a72b73ec7ed7e95842cc783195004d08c541091 (diff)
Optimize images
Diffstat (limited to 'content/know/concept/optical-wave-breaking/index.pdc')
-rw-r--r--content/know/concept/optical-wave-breaking/index.pdc12
1 files changed, 8 insertions, 4 deletions
diff --git a/content/know/concept/optical-wave-breaking/index.pdc b/content/know/concept/optical-wave-breaking/index.pdc
index 3c509fe..757a633 100644
--- a/content/know/concept/optical-wave-breaking/index.pdc
+++ b/content/know/concept/optical-wave-breaking/index.pdc
@@ -39,7 +39,9 @@ Shortly before the slope would become infinite,
small waves start "falling off" the edge of the pulse,
hence the name *wave breaking*:
-<img src="pheno-break-inst.jpg">
+<a href="pheno-break-inst.jpg">
+<img src="pheno-break-inst-small.jpg">
+</a>
Several interesting things happen around this moment.
To demonstrate this, spectrograms of the same simulation
@@ -57,7 +59,7 @@ which eventually melt together, leading to a trapezoid shape in the $t$-domain.
Dispersive broadening then continues normally:
<a href="pheno-break-sgram.jpg">
-<img src="pheno-break-sgram.jpg" style="width:80%;display:block;margin:auto;">
+<img src="pheno-break-sgram-small.jpg" style="width:80%;display:block;margin:auto;">
</a>
We call the distance at which the wave breaks $L_\mathrm{WB}$,
@@ -87,7 +89,7 @@ expression can be reduced to:
$$\begin{aligned}
\omega_i(z,t)
\approx \frac{\beta_2 tz}{T_0^4} \bigg( 1 + 2\frac{\gamma P_0 T_0^2}{\beta_2} \exp\!\Big(\!-\!\frac{t^2}{T_0^2}\Big) \bigg)
- = \frac{\beta_2 t z}{T_0^4} \bigg( 1 \pm 2 N_\mathrm{sol}^2 \exp\!\Big(\!-\!\frac{t^2}{T_0^2}\Big) \bigg)
+ = \frac{\beta_2 t z}{T_0^4} \bigg( 1 + 2 N_\mathrm{sol}^2 \exp\!\Big(\!-\!\frac{t^2}{T_0^2}\Big) \bigg)
\end{aligned}$$
Where we have assumed $\beta_2 > 0$,
@@ -183,7 +185,9 @@ $$\begin{aligned}
This prediction for $L_\mathrm{WB}$ appears to agree well
with the OWB observed in the simulation:
-<img src="pheno-break.jpg">
+<a href="pheno-break.jpg">
+<img src="pheno-break-small.jpg">
+</a>
Because all spectral broadening up to $L_\mathrm{WB}$ is caused by SPM,
whose frequency behaviour is known, it is in fact possible to draw