diff options
author | Prefetch | 2021-03-01 11:45:21 +0100 |
---|---|---|
committer | Prefetch | 2021-03-01 11:45:21 +0100 |
commit | 20e7c96c35b922252e17fd5fc9ff0407d9bd30ca (patch) | |
tree | 540108e358c2b6906f405bf85022eab6573b5d91 /content/know/concept/optical-wave-breaking/index.pdc | |
parent | 8a72b73ec7ed7e95842cc783195004d08c541091 (diff) |
Optimize images
Diffstat (limited to 'content/know/concept/optical-wave-breaking/index.pdc')
-rw-r--r-- | content/know/concept/optical-wave-breaking/index.pdc | 12 |
1 files changed, 8 insertions, 4 deletions
diff --git a/content/know/concept/optical-wave-breaking/index.pdc b/content/know/concept/optical-wave-breaking/index.pdc index 3c509fe..757a633 100644 --- a/content/know/concept/optical-wave-breaking/index.pdc +++ b/content/know/concept/optical-wave-breaking/index.pdc @@ -39,7 +39,9 @@ Shortly before the slope would become infinite, small waves start "falling off" the edge of the pulse, hence the name *wave breaking*: -<img src="pheno-break-inst.jpg"> +<a href="pheno-break-inst.jpg"> +<img src="pheno-break-inst-small.jpg"> +</a> Several interesting things happen around this moment. To demonstrate this, spectrograms of the same simulation @@ -57,7 +59,7 @@ which eventually melt together, leading to a trapezoid shape in the $t$-domain. Dispersive broadening then continues normally: <a href="pheno-break-sgram.jpg"> -<img src="pheno-break-sgram.jpg" style="width:80%;display:block;margin:auto;"> +<img src="pheno-break-sgram-small.jpg" style="width:80%;display:block;margin:auto;"> </a> We call the distance at which the wave breaks $L_\mathrm{WB}$, @@ -87,7 +89,7 @@ expression can be reduced to: $$\begin{aligned} \omega_i(z,t) \approx \frac{\beta_2 tz}{T_0^4} \bigg( 1 + 2\frac{\gamma P_0 T_0^2}{\beta_2} \exp\!\Big(\!-\!\frac{t^2}{T_0^2}\Big) \bigg) - = \frac{\beta_2 t z}{T_0^4} \bigg( 1 \pm 2 N_\mathrm{sol}^2 \exp\!\Big(\!-\!\frac{t^2}{T_0^2}\Big) \bigg) + = \frac{\beta_2 t z}{T_0^4} \bigg( 1 + 2 N_\mathrm{sol}^2 \exp\!\Big(\!-\!\frac{t^2}{T_0^2}\Big) \bigg) \end{aligned}$$ Where we have assumed $\beta_2 > 0$, @@ -183,7 +185,9 @@ $$\begin{aligned} This prediction for $L_\mathrm{WB}$ appears to agree well with the OWB observed in the simulation: -<img src="pheno-break.jpg"> +<a href="pheno-break.jpg"> +<img src="pheno-break-small.jpg"> +</a> Because all spectral broadening up to $L_\mathrm{WB}$ is caused by SPM, whose frequency behaviour is known, it is in fact possible to draw |