diff options
author | Prefetch | 2021-07-28 14:27:37 +0200 |
---|---|---|
committer | Prefetch | 2021-07-28 14:27:37 +0200 |
commit | e12c7ce372ecaa042d85d9fb76371a75ff518d1a (patch) | |
tree | e3658cdf571dc8107a1c0ba7c5e1efe82870dad7 /content/know/concept/parabolic-cylindrical-coordinates | |
parent | bffb355fd906723dcf7e587ce6ad16c751ed8abe (diff) |
Expand knowledge base, fix a:visited CSS
Diffstat (limited to 'content/know/concept/parabolic-cylindrical-coordinates')
-rw-r--r-- | content/know/concept/parabolic-cylindrical-coordinates/index.pdc | 188 |
1 files changed, 0 insertions, 188 deletions
diff --git a/content/know/concept/parabolic-cylindrical-coordinates/index.pdc b/content/know/concept/parabolic-cylindrical-coordinates/index.pdc deleted file mode 100644 index 56544ae..0000000 --- a/content/know/concept/parabolic-cylindrical-coordinates/index.pdc +++ /dev/null @@ -1,188 +0,0 @@ ---- -title: "Parabolic cylindrical coordinates" -firstLetter: "P" -publishDate: 2021-03-04 -categories: -- Mathematics -- Physics - -date: 2021-03-04T15:07:46+01:00 -draft: false -markup: pandoc ---- - -# Parabolic cylindrical coordinates - -**Parabolic cylindrical coordinates** are a coordinate system -that describes a point in space using three coordinates $(\sigma, \tau, z)$. -The $z$-axis is unchanged from the Cartesian system, -hence it is called a *cylindrical* system. -In the $z$-isoplane, however, confocal parabolas are used. -These coordinates can be converted to the Cartesian $(x, y, z)$ as follows: - -$$\begin{aligned} - \boxed{ - x = \frac{1}{2} (\tau^2 - \sigma^2 ) - \qquad - y = \sigma \tau - \qquad - z = z - } -\end{aligned}$$ - -Converting the other way is a bit trickier. -It can be done by solving the following equations, -and potentially involves some fiddling with signs: - -$$\begin{aligned} - 2 x - = \frac{y^2}{\sigma^2} - \sigma^2 - \qquad \quad - 2 x - = - \frac{y^2}{\tau^2} + \tau^2 -\end{aligned}$$ - -Parabolic cylindrical coordinates form an orthogonal -[curvilinear](/know/concept/curvilinear-coordinates/) system, -so we would like to find its scale factors $h_\sigma$, $h_\tau$ and $h_z$. -The differentials of the Cartesian coordinates are as follows: - -$$\begin{aligned} - \dd{x} = - \sigma \dd{\sigma} + \tau \dd{\tau} - \qquad - \dd{y} = \tau \dd{\sigma} + \sigma \dd{\tau} - \qquad - \dd{z} = \dd{z} -\end{aligned}$$ - -We calculate the line segment $\dd{\ell}^2$, -skipping many terms thanks to orthogonality: - -$$\begin{aligned} - \dd{\ell}^2 - &= (\sigma^2 + \tau^2) \:\dd{\sigma}^2 + (\tau^2 + \sigma^2) \:\dd{\tau}^2 + \dd{z}^2 -\end{aligned}$$ - -From this, we can directly read off the scale factors $h_\sigma^2$, $h_\tau^2$ and $h_z^2$, -which turn out to be: - -$$\begin{aligned} - \boxed{ - h_\sigma = \sqrt{\sigma^2 + \tau^2} - \qquad - h_\tau = \sqrt{\sigma^2 + \tau^2} - \qquad - h_z = 1 - } -\end{aligned}$$ - -With these scale factors, we can use -the general formulae for orthogonal curvilinear coordinates -to easily to convert things from the Cartesian system. -The basis vectors are: - -$$\begin{aligned} - \boxed{ - \begin{aligned} - \vu{e}_\sigma - &= \frac{- \sigma}{\sqrt{\sigma^2 + \tau^2}} \vu{e}_x + \frac{\tau}{\sqrt{\sigma^2 + \tau^2}} \vu{e}_y - \\ - \vu{e}_\tau - &= \frac{\tau}{\sqrt{\sigma^2 + \tau^2}} \vu{e}_x + \frac{\sigma}{\sqrt{\sigma^2 + \tau^2}} \vu{e}_y - \\ - \vu{e}_z - &= \vu{e}_z - \end{aligned} - } -\end{aligned}$$ - -The basic vector operations (gradient, divergence, Laplacian and curl) are given by: - -$$\begin{aligned} - \boxed{ - \nabla f - = \frac{\mathbf{e}_\sigma}{\sqrt{\sigma^2 + \tau^2}} \pdv{f}{\sigma} - + \frac{\mathbf{e}_\tau}{\sqrt{\sigma^2 + \tau^2}} \pdv{f}{\tau} - + \mathbf{e}_z \pdv{f}{z} - } -\end{aligned}$$ - -$$\begin{aligned} - \boxed{ - \nabla \cdot \mathbf{V} - = \frac{1}{\sigma^2 + \tau^2} - \Big( \pdv{(V_\sigma \sqrt{\sigma^2 + \tau^2})}{d\sigma} + \pdv{(V_\tau \sqrt{\sigma^2 + \tau^2})}{d\tau} \Big) + \pdv{V_z}{z} - } -\end{aligned}$$ - -$$\begin{aligned} - \boxed{ - \nabla^2 f - = \frac{1}{\sigma^2 + \tau^2} \Big( \pdv[2]{f}{\sigma} + \pdv[2]{f}{\tau} \Big) + \pdv[2]{f}{z} - } -\end{aligned}$$ - -$$\begin{aligned} - \boxed{ - \begin{aligned} - \nabla \times \mathbf{V} - &= \mathbf{e}_\sigma \Big( \frac{\mathbf{e}_1}{\sqrt{\sigma^2 + \tau^2}} \pdv{V_z}{\tau} - \pdv{V_\tau}{z} \Big) - \\ - &+ \mathbf{e}_\tau \Big( \pdv{V_\sigma}{z} - \frac{1}{\sqrt{\sigma^2 + \tau^2}} \pdv{V_z}{\sigma} \Big) - \\ - &+ \frac{\mathbf{e}_z}{\sigma^2 + \tau^2} - \Big( \pdv{(V_\tau \sqrt{\sigma^2 + \tau^2})}{\sigma} - \pdv{(V_\sigma \sqrt{\sigma^2 + \tau^2})}{\tau} \Big) - \end{aligned} - } -\end{aligned}$$ - -The differential element of volume $\dd{V}$ -in parabolic cylindrical coordinates is given by: - -$$\begin{aligned} - \boxed{ - \dd{V} = (\sigma^2 + \tau^2) \dd{\sigma} \dd{\tau} \dd{z} - } -\end{aligned}$$ - -The differential elements of the isosurfaces are as follows, -where $\dd{S_\sigma}$ is the $\sigma$-isosurface, etc.: - -$$\begin{aligned} - \boxed{ - \begin{aligned} - \dd{S_\sigma} &= \sqrt{\sigma^2 + \tau^2} \dd{\tau} \dd{z} - \\ - \dd{S_\tau} &= \sqrt{\sigma^2 + \tau^2} \dd{\sigma} \dd{z} - \\ - \dd{S_z} &= (\sigma^2 + \tau^2) \dd{\sigma} \dd{\tau} - \end{aligned} - } -\end{aligned}$$ - -The normal element $\dd{\vu{S}}$ of a surface and -the tangent element $\dd{\vu{\ell}}$ of a curve are respectively: - -$$\begin{aligned} - \boxed{ - \dd{\vu{S}} - = \mathbf{e}_\sigma \sqrt{\sigma^2 + \tau^2} \dd{\tau} \dd{z} - + \mathbf{e}_\tau \sqrt{\sigma^2 + \tau^2} \dd{\sigma} \dd{z} - + \mathbf{e}_z (\sigma^2 + \tau^2) \dd{\sigma} \dd{\tau} - } -\end{aligned}$$ - -$$\begin{aligned} - \boxed{ - \dd{\vu{\ell}} - = \mathbf{e}_\sigma \sqrt{\sigma^2 + \tau^2} \dd{\sigma} - + \mathbf{e}_\tau \sqrt{\sigma^2 + \tau^2} \dd{\tau} - + \mathbf{e}_z \dd{z} - } -\end{aligned}$$ - - -## References -1. M.L. Boas, - *Mathematical methods in the physical sciences*, 2nd edition, - Wiley. |