diff options
author | Prefetch | 2021-07-04 20:02:27 +0200 |
---|---|---|
committer | Prefetch | 2021-07-04 20:02:27 +0200 |
commit | e5f44d97c6652f262c82b5c796c07a7a22a00e90 (patch) | |
tree | 18a5508b981a0bbbbb1937dc75a72c756cf405f7 /content/know/concept/propagator | |
parent | 805718880c936d778c99fe0d5cfdb238342a83c7 (diff) |
Expand knowledge base
Diffstat (limited to 'content/know/concept/propagator')
-rw-r--r-- | content/know/concept/propagator/index.pdc | 81 |
1 files changed, 81 insertions, 0 deletions
diff --git a/content/know/concept/propagator/index.pdc b/content/know/concept/propagator/index.pdc new file mode 100644 index 0000000..2f18c4d --- /dev/null +++ b/content/know/concept/propagator/index.pdc @@ -0,0 +1,81 @@ +--- +title: "Propagator" +firstLetter: "P" +publishDate: 2021-07-04 +categories: +- Physics +- Quantum mechanics + +date: 2021-07-04T10:46:47+02:00 +draft: false +markup: pandoc +--- + +# Propagator + +In quantum mechanics, the **propagator** $K(x_f, t_f; x_i, t_i)$ +gives the probability amplitude that a particle +starting at $x_i$ at $t_i$ ends up at position $x_f$ at $t_f$. +It is defined as follows: + +$$\begin{aligned} + \boxed{ + K(x_f, t_f; x_i, t_i) + \equiv \matrixel{x_f}{\hat{U}(t_f, t_i)}{x_i} + } +\end{aligned}$$ + +Where $\hat{U} \equiv \exp\!(- i t \hat{H} / \hbar)$ is the time-evolution operator. +The probability that a particle travels +from $(x_i, t_i)$ to $(x_f, t_f)$ is then given by: + +$$\begin{aligned} + P + &= \big| K(x_f, t_f; x_i, t_i) \big|^2 +\end{aligned}$$ + +Given a general (i.e. non-collapsed) initial state $\psi_i(x) \equiv \psi(x, t_i)$, +we must integrate over $x_i$: + +$$\begin{aligned} + P + &= \bigg| \int_{-\infty}^\infty K(x_f, t_f; x_i, t_i) \: \psi_i(x_i) \dd{x_i} \bigg|^2 +\end{aligned}$$ + +And if the final state $\psi_f(x) \equiv \psi(x, t_f)$ +is not a basis vector either, then we integrate twice: + +$$\begin{aligned} + P + &= \bigg| \iint_{-\infty}^\infty \psi_f^*(x_f) \: K(x_f, t_f; x_i, t_i) \: \psi_i(x_i) \dd{x_i} \dd{x_f} \bigg|^2 +\end{aligned}$$ + +Given a $\psi_i(x)$, the propagator can also be used +to find the full final wave function: + +$$\begin{aligned} + \boxed{ + \psi(x_f, t_f) + = \int_{-\infty}^\infty \psi_i(x_i) K(x_f, t_f; x_i, t_i) \:dx_i + } +\end{aligned}$$ + +Sometimes the name "propagator" is also used to refer to +the so-called *fundamental solution* or *Green's function* $G$ +of the time-dependent Schrödinger equation, +which is related to $K$ by: + +$$\begin{aligned} + \boxed{ + G(x_f, t_f; x_i, t_i) + = - \frac{i}{\hbar} \: \Theta(t_f - t_i) \: K(x_f, t_f; x_i, t_i) + } +\end{aligned}$$ + +Where $\Theta(t)$ is the [Heaviside step function](/know/concept/heaviside-step-function/). +The definition of $G$ is that it satisfies the following equation, +where $\delta$ is the [Dirac delta function](/know/concept/dirac-delta-function/): + +$$\begin{aligned} + \Big( i \hbar \pdv{t_f} - \hat{H} \Big) G = \delta(x_f - x_i) \: \delta(t_f - t_i) +\end{aligned}$$ |