diff options
author | Prefetch | 2021-09-22 15:33:15 +0200 |
---|---|---|
committer | Prefetch | 2021-09-22 15:33:15 +0200 |
commit | bb79f9b1beee85f2290f3bed9b62eacaca445602 (patch) | |
tree | f0bde207897aa6514d91371baa92b9e00c727cb1 /content/know/concept/rabi-oscillation/index.pdc | |
parent | 42d409fa774efb8206ae5c701d5cbcc4ae1d9cad (diff) |
Expand knowledge base
Diffstat (limited to 'content/know/concept/rabi-oscillation/index.pdc')
-rw-r--r-- | content/know/concept/rabi-oscillation/index.pdc | 218 |
1 files changed, 218 insertions, 0 deletions
diff --git a/content/know/concept/rabi-oscillation/index.pdc b/content/know/concept/rabi-oscillation/index.pdc new file mode 100644 index 0000000..cf393a4 --- /dev/null +++ b/content/know/concept/rabi-oscillation/index.pdc @@ -0,0 +1,218 @@ +--- +title: "Rabi oscillation" +firstLetter: "R" +publishDate: 2021-09-22 +categories: +- Physics +- Quantum mechanics +- Optics + +date: 2021-09-18T00:41:43+02:00 +draft: false +markup: pandoc +--- + +# Rabi oscillation + +In quantum mechanics, from the derivation of +[time-dependent perturbation theory](/know/concept/time-dependent-perturbation-theory/), +we know that a time-dependent term $\hat{H}_1$ in the Hamiltonian +affects the state as follows, +where $c_n(t)$ are the coefficients of the linear combination +of basis states $\ket{n} \exp\!(-i E_n t / \hbar)$: + +$$\begin{aligned} + i \hbar \dv{c_m}{t} + = \sum_{n} c_n(t) \matrixel{m}{\hat{H}_1}{n} \exp\!(i \omega_{mn} t) +\end{aligned}$$ + +Where $\omega_{mn} \equiv (E_m \!-\! E_n) / \hbar$ +for energies $E_m$ and $E_n$. +Note that this equation is exact, +despite being used for deriving perturbation theory. +Consider a two-level system where $n \in \{a, b\}$, +in which case the above equation can be expanded to the following: + +$$\begin{aligned} + \dv{c_a}{t} + &= - \frac{i}{\hbar} \matrixel{a}{\hat{H}_1}{b} \exp\!(- i \omega_0 t) \: c_b - \frac{i}{\hbar} \matrixel{a}{\hat{H}_1}{a} \: c_a + \\ + \dv{c_b}{t} + &= - \frac{i}{\hbar} \matrixel{b}{\hat{H}_1}{a} \exp\!(i \omega_0 t) \: c_a - \frac{i}{\hbar} \matrixel{b}{\hat{H}_1}{b} \: c_b +\end{aligned}$$ + +Where $\omega_0 \equiv \omega_{ba}$ is positive. +We assume that $\hat{H}_1$ has odd spatial parity, +in which case [Laporte's selection rule](/know/concept/selection-rules/) +states that the diagonal matrix elements vanish, leaving: + +$$\begin{aligned} + \dv{c_a}{t} + &= - \frac{i}{\hbar} \matrixel{a}{\hat{H}_1}{b} \exp\!(- i \omega_0 t) \: c_b + \\ + \dv{c_b}{t} + &= - \frac{i}{\hbar} \matrixel{b}{\hat{H}_1}{a} \exp\!(i \omega_0 t) \: c_a +\end{aligned}$$ + +We now choose $\hat{H}_1$ to be as follows, +sinusoidally oscillating with a spatially odd $V(\vec{r})$: + +$$\begin{aligned} + \hat{H}_1(t) + = V \cos\!(\omega t) + = \frac{V}{2} \Big( \exp\!(i \omega t) + \exp\!(-i \omega t) \Big) +\end{aligned}$$ + +We insert this into the equations for $c_a$ and $c_b$, +and define $V_{ab} \equiv \matrixel{a}{V}{b}$, leading us to: + +$$\begin{aligned} + \dv{c_a}{t} + &= - i \frac{V_{ab}}{2 \hbar} \Big( \exp\!\big(i (\omega \!-\! \omega_0) t\big) + \exp\!\big(\!-\! i (\omega \!+\! \omega_0) t\big) \Big) \: c_b + \\ + \dv{c_b}{t} + &= - i \frac{V_{ab}}{2 \hbar} \Big( \exp\!\big(i (\omega \!+\! \omega_0) t\big) + \exp\!\big(\!-\! i (\omega \!-\! \omega_0) t\big) \Big) \: c_a +\end{aligned}$$ + +Here, we make the *rotating wave approximation*: +assuming we are close to resonance $\omega \approx \omega_0$, +we decide that $\exp\!(i (\omega \!+\! \omega_0) t)$ +oscillates so much faster than $\exp\!(i (\omega \!-\! \omega_0) t)$, +that its effect turns out negligible +when the system is observed over a reasonable time interval. + +In other words, over this reasonably-sized time interval, +$\exp\!(i (\omega \!+\! \omega_0) t)$ averages to zero, +while $\exp\!(i (\omega \!-\! \omega_0) t)$ does not. +Dropping the respective terms thus leaves us with: + +$$\begin{aligned} + \dv{c_a}{t} + = - i \frac{V_{ab}}{2 \hbar} \exp\!\big(i (\omega \!-\! \omega_0) t \big) \: c_b + \qquad \quad + \dv{c_b}{t} + = - i \frac{V_{ba}}{2 \hbar} \exp\!\big(\!-\! i (\omega \!-\! \omega_0) t \big) \: c_a +\end{aligned}$$ + +Now we can solve this system of coupled equations exactly. +We differentiate the first equation with respect to $t$, +and then substitute $\dv*{c_b}{t}$ for the second equation: + +$$\begin{aligned} + \dv[2]{c_a}{t} + &= - i \frac{V_{ab}}{2 \hbar} \bigg( i (\omega - \omega_0) \: c_b + \dv{c_b}{t} \bigg) \exp\!\big(i (\omega \!-\! \omega_0) t \big) + \\ + &= - i \frac{V_{ab}}{2 \hbar} \bigg( i (\omega - \omega_0) \: c_b + - i \frac{V_{ba}}{2 \hbar} \exp\!\big(\!-\! i (\omega \!-\! \omega_0) t \big) \: c_a \bigg) + \exp\!\big(i (\omega \!-\! \omega_0) t \big) + \\ + &= \frac{V_{ab}}{2 \hbar} (\omega - \omega_0) \exp\!\big(i (\omega \!-\! \omega_0) t \big) \: c_b - \frac{|V_{ab}|^2}{(2 \hbar)^2} c_a +\end{aligned}$$ + +In the first term, we recognize $\dv*{c_a}{t}$, +which we insert to arrive at an equation for $c_a(t)$: + +$$\begin{aligned} + 0 + = \dv[2]{c_a}{t} - i (\omega - \omega_0) \dv{c_a}{t} + \frac{|V_{ab}|^2}{(2 \hbar)^2} \: c_a +\end{aligned}$$ + +To solve this, we make the ansatz $c_a(t) = \exp\!(\lambda t)$, +which, upon insertion, gives us: + +$$\begin{aligned} + 0 + = \lambda^2 - i (\omega - \omega_0) \lambda + \frac{|V_{ab}|^2}{(2 \hbar)^2} +\end{aligned}$$ + +This quadratic equation has two complex roots $\lambda_1$ and $\lambda_2$, +which are found to be: + +$$\begin{aligned} + \lambda_1 + = i \frac{\omega - \omega_0 + \tilde{\Omega}}{2} + \qquad \quad + \lambda_2 + = i \frac{\omega - \omega_0 - \tilde{\Omega}}{2} +\end{aligned}$$ + +Where we have defined the **generalized Rabi frequency** $\tilde{\Omega}$ to be given by: + +$$\begin{aligned} + \boxed{ + \tilde{\Omega} + \equiv \sqrt{(\omega - \omega_0)^2 + \frac{|V_{ab}|^2}{\hbar^2}} + } +\end{aligned}$$ + +So that the general solution $c_a(t)$ is as follows, +where $A$ and $B$ are arbitrary constants, +to be determined from initial conditions (and normalization): + +$$\begin{aligned} + \boxed{ + c_a(t) + = \Big( A \sin\!(\tilde{\Omega} t / 2) + B \cos\!(\tilde{\Omega} t / 2) \Big) \exp\!\big(i (\omega \!-\! \omega_0) t / 2 \big) + } +\end{aligned}$$ + +And then the corresponding $c_b(t)$ can be found +from the coupled equation we started at, +or, if we only care about the probability density $|c_a|^2$, +we can use $|c_b|^2 = 1 - |c_a|^2$. +For example, if $A = 0$ and $B = 1$, +we get the following probabilities + +$$\begin{aligned} + |c_a(t)|^2 + &= \cos^2(\tilde{\Omega} t / 2) + = \frac{1}{2} \Big( 1 + \cos\!(\tilde{\Omega} t) \Big) + \\ + |c_b(t)|^2 + &= \sin^2(\tilde{\Omega} t / 2) + = \frac{1}{2} \Big( 1 - \cos\!(\tilde{\Omega} t) \Big) +\end{aligned}$$ + +Note that the period was halved by squaring. +This periodic "flopping" of the particle between $\ket{a}$ and $\ket{b}$ +is known as **Rabi oscillation**, **Rabi flopping** or the **Rabi cycle**. +This is a more accurate treatment +of the flopping found from first-order perturbation theory. + +The name **generalized Rabi frequency** suggests +that there is a non-general version. +Indeed, the **Rabi frequency** $\Omega$ is based on +the special case of exact resonance $\omega = \omega_0$: + +$$\begin{aligned} + \Omega + \equiv \frac{V_{ab}}{\hbar} +\end{aligned}$$ + +As an example, Rabi oscillation arises +in the [electric dipole approximation](/know/concept/electric-dipole-approximation/), +where $\hat{H}_1$ is: + +$$\begin{aligned} + \hat{H}_1(t) + = - q \vec{r} \cdot \vec{E}_0 \cos(\omega t) +\end{aligned}$$ + +After making the rotating wave approximation, +the resulting Rabi frequency is given by: + +$$\begin{aligned} + \Omega + = \frac{\vec{d} \cdot \vec{E}_0}{\hbar} +\end{aligned}$$ + +Where $\vec{E}_0$ is the [electric field](/know/concept/electric-field/) amplitude, +and $\vec{d} \equiv q \matrixel{a}{\vec{r}}{b}$ is the transition dipole moment +of the electron between orbitals $\ket{a}$ and $\ket{b}$. + + + +## References +1. D.J. Griffiths, D.F. Schroeter, + *Introduction to quantum mechanics*, 3rd edition, + Cambridge. |