diff options
author | Prefetch | 2021-05-08 16:08:41 +0200 |
---|---|---|
committer | Prefetch | 2021-05-08 16:08:41 +0200 |
commit | d3b96730bd01263098bbb96c15148878e5633a04 (patch) | |
tree | d464befc29b37c58215cf7d1995ea77f127ccbae /content/know/concept/repetition-code/index.pdc | |
parent | 93c8b6e86aeafb2f1b7f6b4d39049276ebbcc91c (diff) |
Expand knowledge base, change text alignment
Diffstat (limited to 'content/know/concept/repetition-code/index.pdc')
-rw-r--r-- | content/know/concept/repetition-code/index.pdc | 349 |
1 files changed, 349 insertions, 0 deletions
diff --git a/content/know/concept/repetition-code/index.pdc b/content/know/concept/repetition-code/index.pdc new file mode 100644 index 0000000..7245cbc --- /dev/null +++ b/content/know/concept/repetition-code/index.pdc @@ -0,0 +1,349 @@ +--- +title: "Repetition code" +firstLetter: "R" +publishDate: 2021-05-07 +categories: +- Quantum information + +date: 2021-05-07T15:10:43+02:00 +draft: false +markup: pandoc +--- + +# Repetition code + +A **repetition code** is a simple approach to error correction: +to protect a bit $x$, make two copies: + +$$\begin{aligned} + 0 \to 000 + \qquad \quad + 1 \to 111 +\end{aligned}$$ + +If a single-bit error occurs, e.g. $000 \to 100$, +a majority vote resets the minority bit. +Clearly, this does not protect against multi-bit errors, +but that is usually not necessary. + +In quantum computing, where error correction is much more important, +repetition codes can also be used, +albeit with some complications, +as discussed below. + + +## Bit flip code + +Suppose that we want to detect errors in +the following arbitrary qubit state $\ket{\psi}$: + +$$\begin{aligned} + \ket{\psi} + = \alpha \ket{0} + \beta \ket{1} +\end{aligned}$$ + +For now, let us limit ourselves to detecting **bit flips**, +where $\alpha$ and $\beta$ get switched: + +$$\begin{aligned} + \alpha \ket{0} + \beta \ket{1} + \quad \to \boxed{\mathrm{Error}} \to \quad + \beta \ket{0} \!+\! \alpha \ket{1} +\end{aligned}$$ + +One way to defend against this is +the quantum version of a classical repetition code: + +$$\begin{aligned} + \ket{\psi} + \quad \to \boxed{\mathrm{Encoder}} \to \quad + \ket*{\overline{\psi}} + = \alpha \ket{000} + \beta \ket{111} +\end{aligned}$$ + +In other words, a *logical* $\ket{0}$ (written $\ket*{\overline{0}}$) +is represented by 3 *physical* qubits, and vice versa: + +$$\begin{aligned} + \boxed{ + \ket{0} + \to + \ket*{\overline{0}} + = \ket{000} + \qquad \quad + \ket{1} + \to + \ket*{\overline{1}} + = \ket{111} + } +\end{aligned}$$ + +Such a transformation is easy to achieve with the following sequence +of [quantum gates](/know/concept/quantum-gate/): + +<a href="bit-flip-encode.png"> +<img src="bit-flip-encode.png" style="width:32%;display:block;margin:auto;"> +</a> + +So, a little while after encoding the state $\ket{\psi}$ like that, +a bit flip occurs on the 2nd qubit: + +$$\begin{aligned} + \ket*{\overline{\psi}} + \quad \to \boxed{\mathrm{Error}} \to \quad + \alpha \ket{010} + \beta \ket{101} +\end{aligned}$$ + +But now there is a problem: how do we detect this error? +We could measure the state, but that would make it collapse, +which is probably not what we want. + +The trick is to use operators called **stabilizers**, +in this case for example $ZZI = Z_1 \otimes Z_2 \otimes I_3$, +where $I$ is identity and $Z$ is the Pauli-$Z$ gate. +The 3-qubit basis states are its eigenvectors: + +$$\begin{alignedat}{2} + ZZI \ket{000} + &= + \ket{000} + \qquad + ZZI \ket{001} + &&= + \ket{001} + \\ + ZZI \ket{010} + &= - \ket{010} + \qquad + ZZI \ket{011} + &&= - \ket{011} + \\ + ZZI \ket{100} + &= - \ket{100} + \qquad + ZZI \ket{101} + &&= - \ket{101} + \\ + ZZI \ket{110} + &= + \ket{110} + \qquad + ZZI \ket{111} + &&= + \ket{111} +\end{alignedat}$$ + +We could measure $ZZI$ for $\ket*{\overline{\psi}}$, +and if the eigenvalue is $-1$, +we know that a bit flip has occurred, +whereas if the eigenvalue is $+1$, +there is *maybe* no error ($\ket{001}$ and $\ket{110}$ are false negatives). + +These false negatives are fixed by including another stabilizer $IZZ$, +with these eigenvectors: + +$$\begin{alignedat}{2} + IZZ \ket{000} + &= + \ket{000} + \qquad + IZZ \ket{001} + &&= - \ket{001} + \\ + IZZ \ket{010} + &= - \ket{010} + \qquad + IZZ \ket{011} + &&= + \ket{011} + \\ + IZZ \ket{100} + &= + \ket{100} + \qquad + IZZ \ket{101} + &&= - \ket{101} + \\ + IZZ \ket{110} + &= - \ket{110} + \qquad + IZZ \ket{111} + &&= + \ket{111} +\end{alignedat}$$ + +In which case $\ket{100}$ and $\ket{011}$ are false negatives. +In other words, $IZZ$ cannot detect if the 1st qubit was flipped, +while $ZZI$ cannot protect the 3rd qubit. +But by using both, we know exactly which qubit was flipped +thanks to the eigenvalues: + +<table style="width:30%;margin:auto;text-align:center;"> + <tr> + <th>Error</th> + <th>$ZZI$</th> + <th>$IZZ$</th> + </tr> + <tr> + <td>$I$</td> + <td>$+1$</td> + <td>$+1$</td> + </tr> + <tr> + <td>$X_1$</td> + <td>$-1$</td> + <td>$+1$</td> + </tr> + <tr> + <td>$X_2$</td> + <td>$-1$</td> + <td>$-1$</td> + </tr> + <tr> + <td>$X_1$</td> + <td>$+1$</td> + <td>$-1$</td> + </tr> +</table> + +Where e.g. $X_3$ denotes that the 3rd qubit was flipped. +The measurement outcomes on the last three rows are called **error syndromes**, +and are obtained by a **syndrome measurement**. + +Fortunately, we can measure $ZZI$ and $IZZ$ +without affecting $\ket*{\overline{\psi}}$ itself, +by applying $\mathrm{CNOT}$s to some ancillary qubits +and then measuring those: + +<a href="bit-flip-detect.png"> +<img src="bit-flip-detect.png" style="width:62%;display:block;margin:auto;"> +</a> + +The two measurements, respectively representing $ZZI$ and $IZZ$, +yield $\ket{1}$ if a bit flip definitely occurred, +and $\ket{0}$ otherwise. +There is no entanglement, +so the input is untouched. + + +## Phase flip code + +The above system protects us against all single-qubit bit flips. +Unfortunately, that is not enough: +qubits can also experience a **phase flip**: + +$$\begin{aligned} + \alpha \ket{0} + \beta \ket{1} + \quad \to \boxed{\mathrm{Error}} \to \quad + \alpha \ket{0} - \beta \ket{1} +\end{aligned}$$ + +How to detect that? +If we want to protect against phase flips *instead of* bit flips, +we can simply do the same as before, +but along the $X$-axis intead of the $Z$-axis: + +$$\begin{aligned} + \boxed{ + \ket{0} + \to + \ket*{\overline{0}} + = \ket{+\!+\!+} + \qquad \quad + \ket{1} + \to + \ket*{\overline{1}} + = \ket{-\!-\!-} + } +\end{aligned}$$ + +Such that an arbitrary state $\ket{\psi}$ is encoded as follows, +by the circuit shown below: + +$$\begin{aligned} + \ket{\psi} + \quad \to \boxed{\mathrm{Encoder}} \to \quad + \ket*{\overline{\psi}} + = \alpha \ket{+\!+\!+} + \beta \ket{-\!-\!-} +\end{aligned}$$ + +<a href="phase-flip-encode.png"> +<img src="phase-flip-encode.png" style="width:40%;display:block;margin:auto;"> +</a> + +A phase flip along the $Z$-axis +corresponds to a bit flip along the $X$-axis $\ket{+} \to \ket{-}$. +In this case, the stabilizers are $XXI$ and $IXX$, +and the error detection circuit is as follows: + +<a href="phase-flip-detect.png"> +<img src="phase-flip-detect.png" style="width:70%;display:block;margin:auto;"> +</a> + +This system protects us against all single-qubit phase flips, +but not against bit flips. + + +## Shor code + +What kind of repetition code would we need +if we want to detect both bit flips *and* phase flips? +The most straightforward option is the **Shor code**. +Starting from a phase flip encoding: + +$$\begin{aligned} + \ket{0} \to + \ket*{\overline{0}} + &= \ket{+\!+\!+} + = \bigg( \frac{\ket{0} + \ket{1}}{\sqrt{2}} \bigg)^{\otimes 3} + \\ + \ket{1} \to + \ket*{\overline{1}} + &= \ket{-\!-\!-} + = \bigg( \frac{\ket{0} - \ket{1}}{\sqrt{2}} \bigg)^{\otimes 3} +\end{aligned}$$ + +We add protection against bit flips +by using a repetition code for each physical qubit: + +$$\begin{aligned} + \boxed{ + \ket*{\overline{0}} + = \bigg( \frac{\ket{000} + \ket{111}}{\sqrt{2}} \bigg)^{\otimes 3} + \qquad \quad + \ket*{\overline{1}} + = \bigg( \frac{\ket{000} - \ket{111}}{\sqrt{2}} \bigg)^{\otimes 3} + } +\end{aligned}$$ + +This encoding is achieved by the following quantum circuit, +which simply consists of the phase flip encoder, +followed by 3 copies of the bit flip encoder: + +<a href="shor-code-encode.png"> +<img src="shor-code-encode.png" style="width:55%;display:block;margin:auto;"> +</a> + +We thus use 9 physical qubits to store 1 logical qubit. +Fortunately, more efficient schemes exist. + +The bit flip stabilizers $ZZI$ and $IZZ$ +are applied on a per-block basis, like so: + +$$\begin{aligned} + ZZI \: III \: III \qquad\quad III \: ZZI \: III \qquad\quad III \: III \: ZZI + \\ + IZZ \: III \: III \qquad\quad III \: IZZ \: III \qquad\quad III \: III \: IZZ +\end{aligned}$$ + +Whereas the phase flip stabilizers $XXI$ and $IXX$ +are applied to entire blocks at once: + +$$\begin{aligned} + XXX \: XXX \: III + \qquad \quad + III \: XXX \: XXX +\end{aligned}$$ + + + +## References +1. J.S. Neergaard-Nielsen, + *Quantum information: lectures notes*, + 2021, unpublished. +2. S. Aaronson, + *Introduction to quantum information science: lecture notes*, + 2018, unpublished. + |