diff options
author | Prefetch | 2022-02-01 11:23:35 +0100 |
---|---|---|
committer | Prefetch | 2022-02-01 11:23:35 +0100 |
commit | 43c5b696aaf421dec7aee967002999d9145da35e (patch) | |
tree | 418dd75bb385a8922b9484883ae0d42124239c94 /content/know/concept/rotating-wave-approximation/index.pdc | |
parent | 88537b82784f71104c3a2771330c9e492f57fb03 (diff) |
Expand knowledge base
Diffstat (limited to 'content/know/concept/rotating-wave-approximation/index.pdc')
-rw-r--r-- | content/know/concept/rotating-wave-approximation/index.pdc | 126 |
1 files changed, 126 insertions, 0 deletions
diff --git a/content/know/concept/rotating-wave-approximation/index.pdc b/content/know/concept/rotating-wave-approximation/index.pdc new file mode 100644 index 0000000..874dc96 --- /dev/null +++ b/content/know/concept/rotating-wave-approximation/index.pdc @@ -0,0 +1,126 @@ +--- +title: "Rotating wave approximation" +firstLetter: "R" +publishDate: 2022-02-01 +categories: +- Physics +- Quantum mechanics +- Two-level system +- Optics + +date: 2022-01-31T19:29:43+01:00 +draft: false +markup: pandoc +--- + +# Rotating wave approximation + +Consider the following periodic perturbation $\hat{H}_1$ to a quantum system, +which represents e.g. an [electromagnetic wave](/know/concept/electromagnetic-wave-equation/) +in the [electric dipole approximation](/know/concept/electric-dipole-approximation/): + +$$\begin{aligned} + \hat{H}_1(t) + = \hat{V} \cos\!(\omega t) + = \frac{\hat{V}}{2} \Big( e^{i \omega t} + e^{-i \omega t} \Big) +\end{aligned}$$ + +Where $\hat{V}$ is some operator, and we assume that $\omega$ +is fairly close to a resonance frequency $\omega_0$ +of the system that is getting perturbed by $\hat{H}_1$. + +As an example, consider a two-level system +consisting of states $\ket{g}$ and $\ket{e}$, +with a resonance frequency $\omega_0 = (E_e \!-\! E_g) / \hbar$. +From the derivation of +[time-dependent perturbation theory](/know/concept/time-dependent-perturbation-theory/), +we know that the state $\ket{\Psi} = c_g \ket{g} + c_e \ket{e}$ evolves as: + +$$\begin{aligned} + i \hbar \dv{c_g}{t} + &= \matrixel{g}{\hat{H}_1(t)}{g} \: c_g(t) + \matrixel{g}{\hat{H}_1(t)}{e} \: c_e(t) \: e^{- i \omega_0 t} + \\ + i \hbar \dv{c_e}{t} + &= \matrixel{e}{\hat{H}_1(t)}{g} \: c_g(t) \: e^{i \omega_0 t} + \matrixel{e}{\hat{H}_1(t)}{e} \: c_e(t) +\end{aligned}$$ + +Typically, $\hat{V}$ has odd spatial parity, in which case +[Laporte's selection rule](/know/concept/selection-rules/) +reduces this to: + +$$\begin{aligned} + \dv{c_g}{t} + &= \frac{1}{i \hbar} \matrixel{g}{\hat{H}_1}{e} \: c_e \: e^{- i \omega_0 t} + \\ + \dv{c_e}{t} + &= \frac{1}{i \hbar} \matrixel{e}{\hat{H}_1}{g} \: c_g \: e^{i \omega_0 t} +\end{aligned}$$ + +We now insert the general $\hat{H}_1$ defined above, +and define $V_{eg} \equiv \matrixel{e}{\hat{V}}{g}$ to get: + +$$\begin{aligned} + \dv{c_g}{t} + &= \frac{V_{eg}^*}{i 2 \hbar} + \Big( e^{i (\omega - \omega_0) t} + e^{- i (\omega + \omega_0) t} \Big) \: c_e + \\ + \dv{c_e}{t} + &= \frac{V_{eg}}{i 2 \hbar} + \Big( e^{i (\omega + \omega_0) t} + e^{- i (\omega - \omega_0) t} \Big) \: c_g +\end{aligned}$$ + +At last, here we make the **rotating wave approximation**: +since $\omega$ is assumed to be close to $\omega_0$, +we argue that $\omega \!+\! \omega_0$ is so much larger than $\omega \!-\! \omega_0$ +that those oscillations turn out negligible +if the system is observed over a reasonable time interval. + +Specifically, since both exponentials have the same weight, +the fast ($\omega \!+\! \omega_0$) oscillations +have a tiny amplitude compared to the slow ($\omega \!-\! \omega_0$) ones. +Furthermore, since they average out to zero over most realistic time intervals, +the fast terms can be dropped, leaving: + +$$\begin{aligned} + \boxed{ + \begin{aligned} + e^{i (\omega - \omega_0) t} + e^{- i (\omega + \omega_0) t} + &\approx e^{i (\omega - \omega_0) t} + \\ + e^{i (\omega + \omega_0) t} + e^{- i (\omega - \omega_0) t} + &\approx e^{- i (\omega - \omega_0) t} + \end{aligned} + } +\end{aligned}$$ + +Such that our example set of equations can be approximated as shown below, +and its analysis can continue; +see [Rabi oscillation](/know/concept/rabi-oscillation/) for more: + +$$\begin{aligned} + \dv{c_g}{t} + &= \frac{V_{eg}^*}{i 2 \hbar} c_e \: e^{i (\omega - \omega_0) t} + \\ + \dv{c_e}{t} + &= \frac{V_{eg}}{i 2 \hbar} c_g \: e^{- i (\omega - \omega_0) t} +\end{aligned}$$ + +This approximation's name is a bit confusing: +the idea is that going from the Schrödinger to +the [interaction picture](/know/concept/interaction-picture/) +has the effect of removing the exponentials of $\omega_0$ from the above equations, +i.e. multiplying them by $e^{i \omega_0 t}$ and $e^{- i \omega_0 t}$ +respectively, which can be regarded as a rotation. + +Relative to this rotation, when we split the wave $\cos\!(\omega t)$ +into two exponentials, one co-rotates, and the other counter-rotates. +We keep only the co-rotating waves, hence the name. + +The rotating wave approximation is usually used in the context +of the two-level quantum system for light-matter interactions, +as in the above example. +However, it is not specific to that case, +and it more generally refers to any approximation +where fast-oscillating terms are neglected. + + |