summaryrefslogtreecommitdiff
path: root/content/know/concept/self-energy
diff options
context:
space:
mode:
authorPrefetch2021-11-29 20:39:20 +0100
committerPrefetch2021-11-29 20:39:20 +0100
commitc7d44d4d1c74152e49d4a21f41635aa21c5f6333 (patch)
treead859c76b6663302d57a8e72e7db21ec024fcbcd /content/know/concept/self-energy
parent61271b92a793dd837d8326c7064cebd0a3fcdb39 (diff)
Expand knowledge base
Diffstat (limited to 'content/know/concept/self-energy')
-rw-r--r--content/know/concept/self-energy/index.pdc55
1 files changed, 29 insertions, 26 deletions
diff --git a/content/know/concept/self-energy/index.pdc b/content/know/concept/self-energy/index.pdc
index d2908eb..c86f8c5 100644
--- a/content/know/concept/self-energy/index.pdc
+++ b/content/know/concept/self-energy/index.pdc
@@ -50,8 +50,6 @@ and $\hat{\Psi}_a \equiv \hat{\Psi}_{s_a}(\vb{r}_a, \tau_a)$:
$$\begin{aligned}
G_{ba}
- %&= - \frac{\expval{\mathcal{T}\Big\{ \hat{K}(\hbar \beta, 0) \hat{\Psi}_b \hat{\Psi}_a^\dagger \Big\}}}{\expval{\hat{K}(\hbar \beta, 0)}}
- %\\
&= - \frac{\displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\!\frac{1}{\hbar} \Big)^n \idotsint_0^{\hbar \beta}
\expval{\mathcal{T}\Big\{ \hat{W}(\tau_1) \cdots \hat{W}(\tau_n) \hat{\Psi}_b \hat{\Psi}_a^\dagger \Big\}} \dd{\tau_1} \cdots \dd{\tau_n}}
{\hbar \displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\!\frac{1}{\hbar} \Big)^n \idotsint_0^{\hbar \beta}
@@ -141,12 +139,15 @@ $$\begin{aligned}
These integrals over products of interactions and Green's functions
are the perfect place to apply [Feynman diagrams](/know/concept/feynman-diagram/).
-Conveniently, it even turns out that the factor $(-1)^p$
-is exactly equivalent to the rule that each diagram is multiplied by $(-1)^F$,
+Conveniently, it turns out that the factor $(-1)^p$
+is equivalent to the rule that each diagram must be multiplied by $(-1)^F$,
with $F$ the number of fermion loops.
+Keep in mind that fermion lines absorb a factor $-\hbar$ each (see above),
+and interactions $-1/\hbar$.
-The denominator thus turns into a sum of all possible diagrams for each total order $n$
-(the order of a diagram is the number of interaction lines it contains).
+The denominator turns into a sum of all possible diagrams
+(including equivalent ones) for each total order $n$
+(the order is the number of interaction lines).
The endpoints $a$ and $b$ do not appear here,
so we conclude that all those diagrams only have internal vertices;
we will therefore refer to them as **internal diagrams**.
@@ -168,24 +169,25 @@ We thus find:
$$\begin{aligned}
G_{ba}
- &= \frac{\displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{\hbar}{2} \Big)^n
- \bigg[ \sum_\mathrm{all\;ext}^{n} \binom{1 \: \mathrm{external}}{\mathrm{order} \; m \!\le\! n}
- \binom{\mathrm{0\;or\;more\;internal}}{\mathrm{total\;order} \; (n \!-\! m)} \bigg]}
- {\displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{\hbar}{2} \Big)^n
- \binom{\mathrm{0\;or\;more\;internal}}{\mathrm{total\;order} \; n}}
+ &= \frac{\displaystyle\sum_{n = 0}^\infty \frac{1}{2^n n!}
+ \bigg[ \sum_{m = 0}^{n} \frac{n!}{m! (n \!-\! m)!} \binom{1 \; \mathrm{external}}{\mathrm{order} \; m}_{\!\Sigma\mathrm{all}}
+ \binom{\mathrm{0\;or\;more\;internal}}{\mathrm{total\;order} \; (n \!-\! m)}_{\!\Sigma\mathrm{all}} \bigg]}
+ {\displaystyle\sum_{n = 0}^\infty \frac{1}{2^n n!} \binom{\mathrm{0\;or\;more\;internal}}{\mathrm{total\;order} \; n}_{\!\Sigma\mathrm{all}}}
\end{aligned}$$
-Where the total order refers to the sum of the orders of all disconnected diagrams.
-Note that the external diagram does not directly depend on $n$.
-We can therefore reorganize:
+Where the total order is the sum of the orders of all considered diagrams,
+and the new factor is needed for all the possible choices
+of vertices to put in the external part.
+Note that the external diagram does not directly depend on $n$,
+so we reorganize:
$$\begin{aligned}
G_{ba}
- &= \frac{\displaystyle\sum_\mathrm{all\;ext}^{\infty} \binom{1 \: \mathrm{external}}{\mathrm{order} \; m}
- \bigg[ \sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{\hbar}{2} \Big)^n
- \binom{\mathrm{0\;or\;more\;internal}}{\mathrm{total\;order} \; (n \!-\! m)} \bigg]}
- {\displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{\hbar}{2} \Big)^n
- \binom{\mathrm{0\;or\;more\;internal}}{\mathrm{total\;order} \; n}}
+ &= \frac{\displaystyle\sum_{m = 0}^{\infty} \frac{1}{2^m m!} \binom{1 \; \mathrm{external}}{\mathrm{order} \; m}_{\!\Sigma\mathrm{all}}
+ \bigg[ \sum_{n = 0}^\infty \frac{1}{2^{n-m} (n \!-\! m)!}
+ \binom{\mathrm{0\;or\;more\;internal}}{\mathrm{total\;order} \; (n \!-\! m)}_{\!\Sigma\mathrm{all}} \bigg]}
+ {\displaystyle\sum_{n = 0}^\infty \frac{1}{2^n n!}
+ \binom{\mathrm{0\;or\;more\;internal}}{\mathrm{total\;order} \; n}_{\!\Sigma\mathrm{all}}}
\end{aligned}$$
Since both $n$ and $m$ start at zero,
@@ -194,18 +196,19 @@ we see that the second sum in the numerator does not actually depend on $m$:
$$\begin{aligned}
G_{ba}
- &= \frac{\displaystyle\sum_\mathrm{all\;ext} \binom{1 \: \mathrm{external}}{\mathrm{order} \; m}
- \bigg[ \sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{\hbar}{2} \Big)^n
- \binom{\mathrm{0\;or\;more\;internal}}{\mathrm{total\;order} \; n} \bigg]}
- {\displaystyle\sum_{n = 0}^\infty \frac{1}{n!} \Big( \!-\! \frac{\hbar}{2} \Big)^n
- \binom{\mathrm{0\;or\;more\;internal}}{\mathrm{total\;order} \; n}}
+ &= \frac{\displaystyle\sum_{m = 0}^{\infty} \frac{1}{2^m m!} \binom{1 \; \mathrm{external}}{\mathrm{order} \; m}_{\!\Sigma\mathrm{all}}
+ \bigg[ \sum_{n = 0}^\infty \frac{1}{2^n n!} \binom{\mathrm{0\;or\;more\;internal}}{\mathrm{total\;order} \; n}_{\!\Sigma\mathrm{all}} \bigg]}
+ {\displaystyle\sum_{n = 0}^\infty \frac{1}{2^n n!} \binom{\mathrm{0\;or\;more\;internal}}{\mathrm{total\;order} \; n}_{\!\Sigma\mathrm{all}}}
\\
- &= \sum_\mathrm{all\;ext} \binom{1 \: \mathrm{external}}{\mathrm{order} \; m}
+ &= \sum_{m = 0}^{\infty} \frac{1}{2^m m!} \binom{1 \; \mathrm{external}}{\mathrm{order} \; m}_{\!\Sigma\mathrm{all}}
\end{aligned}$$
In other words, all the disconnected diagrams simply cancel out,
and we are left with a sum over all possible fully connected diagrams
-that contain $a$ and $b$. Let $G(b,a) = G_{ba}$:
+that contain $a$ and $b$. Furthermore, it can be shown using combinatorics
+that exactly $2^m m!$ diagrams at each order are topologically equivalent,
+so we are left with non-equivalent diagrams only.
+Let $G(b,a) = G_{ba}$:
<a href="fullgf.png">
<img src="fullgf.png" style="width:90%;display:block;margin:auto;">