diff options
author | Prefetch | 2021-04-09 20:44:44 +0200 |
---|---|---|
committer | Prefetch | 2021-04-09 20:44:44 +0200 |
commit | 45af77f068aaa57c052cd861412d53beecbe5e3b (patch) | |
tree | d3cbd058679bdeb800f6e25afedecbbc8810dffc /content/know/concept/toffoli-gate/index.pdc | |
parent | 966048bd3594eac4d3398992c8ad3143e290303b (diff) |
Expand knowledge base
Diffstat (limited to 'content/know/concept/toffoli-gate/index.pdc')
-rw-r--r-- | content/know/concept/toffoli-gate/index.pdc | 93 |
1 files changed, 93 insertions, 0 deletions
diff --git a/content/know/concept/toffoli-gate/index.pdc b/content/know/concept/toffoli-gate/index.pdc new file mode 100644 index 0000000..84e7656 --- /dev/null +++ b/content/know/concept/toffoli-gate/index.pdc @@ -0,0 +1,93 @@ +--- +title: "Toffoli gate" +firstLetter: "T" +publishDate: 2021-04-09 +categories: +- Quantum information + +date: 2021-04-09T14:44:43+02:00 +draft: false +markup: pandoc +--- + +# Toffoli gate + +The **Toffoli gate** or **controlled-controlled-NOT (CCNOT) gate** +is a logic gate that is *reversible* (no information is lost) +and *universal* (all reversible logic circuits can be built using Toffoli gates). + +It takes three input bits $A$, $B$ and $C$, +of which it returns $A$ and $B$ unchanged, +and flips $C$ if both $A$ and $B$ are true. +In circuit diagrams, its representation is: + +<a href="toffoli.png"> +<img src="toffoli.png" style="width:19%;display:block;margin:auto;"> +</a> + +This gate is reversible, because $A$ and $B$ are preserved, +and are all you need to reconstruct to $C$. +Moreover, this gate is universal, +because we can make a NAND gate from it: + +<a href="nand.png"> +<img src="nand.png" style="width:38%;display:block;margin:auto;"> +</a> + +A NAND is enough to implement every conceivable circuit. +That said, we can efficiently implement NOT, AND, and XOR using a single Toffoli gate too. +Note that NOT is a special case of NAND: + +<a href="not.png"> +<img src="not.png" style="width:32%;display:block;margin:auto;"> +</a> + +<a href="and.png"> +<img src="and.png" style="width:35%;display:block;margin:auto;"> +</a> + +<a href="xor.png"> +<img src="xor.png" style="width:35%;display:block;margin:auto;"> +</a> + +Using these, we can, as an example, make an OR gate +from three Toffoli gates, +thanks to the fact that $A \lor B = \neg (\neg A \land \neg B)$, +i.e. OR is NAND of NOT $A$ and NOT $B$: + +<a href="or.png"> +<img src="or.png" style="width:50%;display:block;margin:auto;"> +</a> + +Thanks to its reversibility and universality, +the Toffoli gate is interesting in quantum computing, +where it is often referred to as the CCNOT gate. +In the basis $\ket{A} \ket{B} \ket{C}$, its matrix is: + +$$\begin{aligned} + \boxed{ + \mathrm{CCNOT} = + \begin{bmatrix} + 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ + 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ + 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ + 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ + 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ + 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ + 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ + 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 + \end{bmatrix} + } +\end{aligned}$$ + +If we apply this gate to an arbitrary three-qubit state $\ket{\psi}$, +it swaps the last two coefficients: + +$$\begin{aligned} + \mathrm{CCNOT} \ket{\psi} + &= \mathrm{CCNOT} \big( c_{000} \ket{000} + c_{001} \ket{001} + c_{010} \ket{010} + c_{011} \ket{011} \\ + &\qquad\qquad\quad\:\; c_{100} \ket{100} + c_{101} \ket{101} + c_{110} \ket{110} + c_{111} \ket{111} \big) + \\ + &= c_{000} \ket{000} + c_{001} \ket{001} + c_{010} \ket{010} + c_{011} \ket{011} \\ + &\quad\,\, c_{100} \ket{100} + c_{101} \ket{101} + c_{111} \ket{110} + c_{110} \ket{111} +\end{aligned}$$ |