diff options
author | Prefetch | 2021-06-02 20:14:06 +0200 |
---|---|---|
committer | Prefetch | 2021-06-02 20:14:06 +0200 |
commit | 9b12e1072d4662d3aaf4c3f8e0f0272c3c1a6ec8 (patch) | |
tree | d978c6a2198b2663523f30d6b25cd39091ea0ec5 /content | |
parent | cc295b5da8e3db4417523a507caf106d5839d989 (diff) |
Expand knowledge base
Diffstat (limited to 'content')
-rw-r--r-- | content/know/concept/harmonic-oscillator/index.pdc | 292 | ||||
-rw-r--r-- | content/know/concept/selection-rules/index.pdc | 546 |
2 files changed, 838 insertions, 0 deletions
diff --git a/content/know/concept/harmonic-oscillator/index.pdc b/content/know/concept/harmonic-oscillator/index.pdc new file mode 100644 index 0000000..5d97a24 --- /dev/null +++ b/content/know/concept/harmonic-oscillator/index.pdc @@ -0,0 +1,292 @@ +--- +title: "Harmonic oscillator" +firstLetter: "H" +publishDate: 2021-06-02 +categories: +- Physics +- Mathematics + +date: 2021-03-09T20:35:14+01:00 +draft: false +markup: pandoc +--- + +# Harmonic oscillator + +A **harmonic oscillator** obeys +the simple 1D version of [Hooke's law](/know/concept/hookes-law/): +to displace the system away from its equilibrium, +the needed force $F_d(x)$ scales linearly with the displacement $x(t)$: + +$$\begin{aligned} + F_d(x) = k x +\end{aligned}$$ + +Where $k$ is a system-specific proportionality constant, +called the **spring constant**, +since a spring is a good example of a harmonic oscillator, +at least for small displacements. +Hooke's law is also often stated for +the restoring force $F_r(x)$ instead: + +$$\begin{aligned} + F_r(x) = - k x +\end{aligned}$$ + +Let a mass $m$ be attached to the end of the spring. +After displacing it, we let it go $F_d = 0$, +so Newton's second law for the restoring force $F_r$ demands that: + +$$\begin{aligned} + F_r = m x'' +\end{aligned}$$ + +But $F_r = - k x$, +meaning $m x'' = - k x$, +leading to the following equation for $x(t)$: + +$$\begin{aligned} + \boxed{ + x'' + \omega_0^2 x = 0 + } +\end{aligned}$$ + +Where $\omega_0 \equiv \sqrt{k / m}$ is the **natural frequency** of the system. +This differential equation has the following general solution: + +$$\begin{aligned} + \boxed{ + x(t) + = C_1 \sin\!(\omega_0 t) + C_2 \cos\!(\omega_0 t) + } +\end{aligned}$$ + +Where $C_1$ and $C_2$ are constants determined by the initial conditions. +For example, for $x(0) = 1$ and $x'(0) = 0$, the solution becomes: + +$$\begin{aligned} + x(t) = \cos\!(\omega_0 t) +\end{aligned}$$ + +When using Lagrangian mechanics or Hamiltonian mechanics, +we need to know the potential energy $V(x)$ +added to the system by a displacement to $x$. +This equals the work done by the displacement, +and is therefore given by: + +$$\begin{aligned} + V(x) = \int_0^x F_d(x) \:dx = \frac{1}{2} k x^2 = \frac{1}{2} m \omega_0^2 x^2 +\end{aligned}$$ + + +## Damped oscillation + +If there is a **friction force** $F_f$ affecting the system, +then the oscillation amplitude will decrease, +or it might not oscillate at all. +We define $F_f$ using a **viscous damping coefficient** $c$: + +$$\begin{aligned} + F_f = - c x' +\end{aligned}$$ + +Both $F_r$ and $F_f$ are acting on the system, +so Newton's second law states that: + +$$\begin{aligned} + m x'' = - c x' - k x +\end{aligned}$$ + +This can be rewritten in the following conventional form +by defining the **damping coefficient** $\zeta \equiv c / (2 \sqrt{m k})$, +which determines the expected behaviour of the system: + +$$\begin{aligned} + \boxed{ + x'' + 2 \zeta \omega_0 x' + \omega_0^2 x = 0 + } +\end{aligned}$$ + +The general solution is found from the roots $u$ of the auxiliary quadratic equation: + +$$\begin{aligned} + u^2 + 2 \zeta \omega_0 u + \omega_0^2 = 0 +\end{aligned}$$ + +The discriminant $D = 4 \zeta^2 \omega_0^2 - 4 \omega_0^2$ +tells us that the behaviour changes substantially +depending on the damping coefficient $\zeta$, +with three possibilities: $\zeta < 1$ or $\zeta = 1$ or $\zeta > 1$. + +If $\zeta < 1$, there is **underdamping**: +the system oscillates with exponentially decaying +amplitude and reduced frequency $\omega_1 \equiv \omega_0 \sqrt{1 - \zeta^2}$. +The general solution is: + +$$\begin{aligned} + \boxed{ + x(t) + = \big( C_1 \sin\!(\omega_1 t) + C_2 \cos\!(\omega_1 t) \big) \exp\!(- \zeta \omega_0 t) + } +\end{aligned}$$ + +If $\zeta = 1$, there is **critical damping**: +the system returns to its equilibrium point in minimum time. +The general solution is given by: + +$$\begin{aligned} + \boxed{ + x(t) + = \big( C_1 + C_2 t \big) \exp\!(- \omega_0 t) + } +\end{aligned}$$ + +If $\zeta > 1$, there is **overdamping**: +the system returns to equilibrium slowly. +The general solution is as follows, +where $\omega_1 \equiv \omega_0 \sqrt{\zeta^2 - 1}$: + +$$\begin{aligned} + \boxed{ + x(t) + = \big( C_1 \exp\!(\omega_1 t) + C_2 \exp\!(- \omega_1 t) \big) \exp\!(- \zeta \omega_0 t) + } +\end{aligned}$$ + + +## Forced oscillation + +In the differential equations given above, +the right-hand side has always been zero, +meaning that the oscillator is not affected by any external forces. +What if we put a function there? + +$$\begin{aligned} + x'' + 2 \zeta \omega_0 x' + \omega_0^2 x = f(t) +\end{aligned}$$ + +Obviously, there exist infinitely many $f(t)$ to choose from, +and each needs a separate analysis. +However, there is one type of $f(t)$ that deserves special mention, +namely sinusoids: + +$$\begin{aligned} + \boxed{ + x'' + 2 \zeta \omega_0 x' + \omega_0^2 x = \frac{F}{m} \cos\!(\omega t + \chi) + } +\end{aligned}$$ + +Where $F$ is a constant force, $\chi$ is an arbitrary phase, +and the frequency $\omega$ is not necessarily $\omega_0$. +We solve this case for $x(t)$ in detail. +Consider the complex version of the equation: + +$$\begin{aligned} + X'' + 2 \zeta \omega_0 X' + \omega_0^2 X = \frac{F}{m} \exp\!\big(i (\omega t + \chi)\big) +\end{aligned}$$ + +Then $x(t) = \Re\{X(t)\}$. +Inserting the ansatz $X(t) = C \exp\!(i \omega t)$, +for some constant $C$: + +$$\begin{aligned} + - C \omega^2 + C 2 i \zeta \omega_0 \omega + C \omega_0^2 = \frac{F}{m} \exp\!(i \chi) +\end{aligned}$$ + +Where $\exp\!(i \omega t)$ has already been divided out. +We isolate this equation for $C$: + +$$\begin{aligned} + C + = \frac{F}{m \big((\omega_0^2 - \omega^2) + 2 i \zeta \omega_0 \omega\big)} \exp\!(i \chi) + = \frac{F \big((\omega_0^2 - \omega^2) - 2 i \zeta \omega_0 \omega\big)} + {m \big((\omega_0^2 - \omega^2)^2 + 4 \zeta^2 \omega_0^2 \omega^2\big)} + \exp\!(i \chi) +\end{aligned}$$ + +We would like to rewrite this in polar form $C = r \exp\!(i \theta)$, +which turns out to be as follows: + +$$\begin{aligned} + C + &= \frac{F}{m \sqrt{(\omega_0^2 - \omega^2)^2 + 4 \zeta^2 \omega_0^2 \omega^2}} + \exp\!\bigg(i \chi - i \arctan\!\Big(\frac{2 \zeta \omega_0 \omega}{\omega_0^2 - \omega^2}\Big)\bigg) +\end{aligned}$$ + +For brevity, let us define the **impedance** $Z$ +and the **phase shift** $\phi$ +in the following way: + +$$\begin{aligned} + Z + \equiv \sqrt{(\omega_0^2 - \omega^2)^2 / \omega^2 + 4 \zeta^2 \omega_0^2} + \qquad \quad + \phi + \equiv \arctan\!\Big(\frac{2 \zeta \omega_0 \omega}{\omega_0^2 - \omega^2}\Big) +\end{aligned}$$ + +Returning to the original ansatz $X(t) = C \exp\!(i \omega t)$, +we take its real part to find $x(t)$: + +$$\begin{aligned} + \boxed{ + x(t) + = \frac{F}{m \omega Z} \sin\!(\omega t + \chi - \phi) + } +\end{aligned}$$ + +Two things are noteworthy here. +Firstly, $f(t)$ and $x(t)$ are out of phase by $\phi$; there is some lag. +This is caused by damping, because if $\zeta = 0$, it disappears $\phi = 0$. + +Secondly, the amplitude of $x(t)$ depends on $\omega$ and $\omega_0$. +This brings us to **resonance**, +where the amplitude can become extremely large. +Actually, resonance has two subtly different definitions, +depending on which one of $\omega$ and $\omega_0$ is a free parameter, +and which one is fixed. + +If the natural $\omega_0$ is fixed and the driving $\omega$ is variable, +we find for which $\omega$ resonance occurs by minimizing the amplitude denominator $\omega Z$. +We thus find: + +$$\begin{aligned} + 0 + = \dv{(\omega Z)}{\omega} + = \frac{- 4 \omega_0^2 \omega + 4 \omega^3 + 8 \zeta^2 \omega_0^2 \omega}{2 \sqrt{(\omega_0^2 - \omega^2)^2 + 4 \zeta^2 \omega_0^2 \omega^2}} + \quad \implies \quad + \boxed{ + \omega = \omega_0 \sqrt{1 - 2 \zeta^2} + } +\end{aligned}$$ + +Meaning the resonant $\omega$ is lower than $\omega_0$, +and resonance can only occur if $\zeta < 1 / \sqrt{2}$. + +However, if the driving $\omega$ is fixed and the natural is $\omega_0$ is variable, +the problem is bit more subtle: +the damping coefficient $\zeta = c / (2 m \omega_0)$ +depends on $\omega_0$. +This leads us to: + +$$\begin{aligned} + 0 + = \dv{(\omega Z)}{\omega_0} + = \frac{4 \omega_0^3 - 4 \omega^2 \omega_0}{2 \sqrt{(\omega_0^2 - \omega^2)^2 + c^2 \omega^2 / m^2}} + \quad \implies \quad + \boxed{ + \omega_0 = \omega + } +\end{aligned}$$ + +Surprisingly, the damping does not affect $\omega_0$, if $\omega$ is given. +However, in both cases, the damping *does* matter for the eventual amplitude: +$c \to 0$ leads to $x \to \infty$, +and resonance disappears or becomes negligible for $c \to \infty$. + + + +## References +1. M.L. Boas, + *Mathematical methods in the physical sciences*, 2nd edition, + Wiley. diff --git a/content/know/concept/selection-rules/index.pdc b/content/know/concept/selection-rules/index.pdc new file mode 100644 index 0000000..5da97e7 --- /dev/null +++ b/content/know/concept/selection-rules/index.pdc @@ -0,0 +1,546 @@ +--- +title: "Selection rules" +firstLetter: "S" +publishDate: 2021-06-02 +categories: +- Physics +- Quantum mechanics + +date: 2021-05-29T14:42:08+02:00 +draft: false +markup: pandoc +--- + +# Selection rules + +In quantum mechanics, it is often necessary to evaluate +matrix elements of the following form, +where $\ell$ and $m$ respectively represent +the total angular momentum and its $z$-component: + +$$\begin{aligned} + \matrixel{f}{\hat{O}}{i} + = \matrixel{n_f \ell_f m_f}{\hat{O}}{n_i \ell_i m_i} +\end{aligned}$$ + +Where $\hat{O}$ is an operator, $\ket{i}$ is an initial state, and +$\ket{f}$ is a final state (usually at least; $\ket{i}$ and $\ket{f}$ +can be any states). **Selection rules** are requirements on the relations +between $\ell_i$, $\ell_f$, $m_i$ and $m_f$, which, if not met, +guarantee that the above matrix element is zero. +Note that $n_f$ and $n_i$ typically do not matter in this context, +so they will be omitted from now on. + + +## Parity rules + +Let $\hat{O}$ denote any operator which is odd under spatial inversion +(parity): + +$$\begin{aligned} + \hat{\Pi}^\dagger \hat{O} \hat{\Pi} = - \hat{O} +\end{aligned}$$ + +Where $\hat{\Pi}$ is the parity operator. +We wrap this property of $\hat{O}$ +in the states $\ket{\ell_f m_f}$ and $\ket{\ell_i m_i}$: + +$$\begin{aligned} + \matrixel{\ell_f m_f}{\hat{O}}{\ell_i m_i} + &= - \matrixel{\ell_f m_f}{\hat{\Pi}^\dagger \hat{O} \hat{\Pi}}{\ell_i m_i} + \\ + &= - \matrixel{\ell_f m_f}{(-1)^{\ell_f} \hat{O} (-1)^{\ell_i}}{\ell_i m_i} + \\ + &= (-1)^{\ell_f + \ell_i + 1} \matrixel{\ell_f m_f}{\hat{O}}{\ell_i m_i} +\end{aligned}$$ + +Which clearly can only be true if the exponent is even, +so $\Delta \ell \equiv \ell_f - \ell_i$ must be odd. +This leads to the following selection rule, +often referred to as **Laporte's rule**: + +$$\begin{aligned} + \boxed{ + \Delta \ell \:\:\text{is odd} + } +\end{aligned}$$ + +If this is not the case, +then the only possible way that the above equation can be satisfied +is if the matrix element vanishes $\matrixel{\ell_f m_f}{\hat{O}}{\ell_i m_i} = 0$. +We can derive an analogous rule for +any operator $\hat{E}$ which is even under parity: + +$$\begin{aligned} + \hat{\Pi}^\dagger \hat{E} \hat{\Pi} = \hat{E} + \quad \implies \quad + \boxed{ + \Delta \ell \:\:\text{is even} + } +\end{aligned}$$ + + +## Dipole rules + +Arguably the most common operator found in such matrix elements +is a position vector operator, like $\vu{r}$ or $\hat{x}$, +and the associated selection rules are known as **dipole rules**. + +For the $z$-component of angular momentum $m$ we have the following: + +$$\begin{aligned} + \boxed{ + \Delta m = 0 \:\:\mathrm{or}\: \pm 1 + } +\end{aligned}$$ + +<div class="accordion"> +<input type="checkbox" id="proof-dipole-m"/> +<label for="proof-dipole-m">Proof</label> +<div class="hidden"> +<label for="proof-dipole-m">Proof.</label> +We know that the angular momentum $z$-component operator $\hat{L}_z$ satisfies: + +$$\begin{aligned} + \comm*{\hat{L}_z}{\hat{x}} = i \hbar \hat{y} + \qquad + \comm*{\hat{L}_z}{\hat{y}} = - i \hbar \hat{x} + \qquad + \comm*{\hat{L}_z}{\hat{z}} = 0 +\end{aligned}$$ + +We take the first relation, +and wrap it in $\bra{\ell_f m_f}$ and $\ket{\ell_i m_i}$, giving: + +$$\begin{aligned} + i \hbar \matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i} + &= \matrixel{\ell_f m_f}{\hat{L}_z \hat{x}}{\ell_i m_i} - \matrixel{\ell_f m_f}{\hat{x} \hat{L}_z}{\ell_i m_i} + \\ + &= \hbar m_f \matrixel{\ell_f m_f}{\hat{x}}{\ell_i m_i} - \hbar m_i \matrixel{\ell_f m_f}{\hat{x}}{\ell_i m_i} + \\ + &= \hbar (m_f - m_i) \matrixel{\ell_f m_f}{\hat{x}}{\ell_i m_i} +\end{aligned}$$ + +Next, we do the same thing with the second relation, for $[\hat{L}_z, \hat{y}]$, giving: + +$$\begin{aligned} + - i \hbar \matrixel{\ell_f m_f}{\hat{x}}{\ell_i m_i} + &= \matrixel{\ell_f m_f}{\hat{L}_z \hat{y}}{\ell_i m_i} - \matrixel{\ell_f m_f}{\hat{y} \hat{L}_z}{\ell_i m_i} + \\ + &= \hbar m_f \matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i} - \hbar m_i \matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i} + \\ + &= \hbar (m_f - m_i) \matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i} +\end{aligned}$$ + +Respectively isolating the two above results for $\hat{x}$ and $\hat{y}$, +we arrive at these equations: + +$$\begin{aligned} + \matrixel{\ell_f m_f}{\hat{x}}{\ell_i m_i} + &= i (m_f - m_i) \matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i} + \\ + \matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i} + &= - i (m_f - m_i) \matrixel{\ell_f m_f}{\hat{x}}{\ell_i m_i} +\end{aligned}$$ + +By inserting the first into the second, +we find (part of) the selection rule: + +$$\begin{aligned} + \matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i} + &= (m_f - m_i)^2 \matrixel{\ell_f m_f}{\hat{y}}{\ell_i m_i} +\end{aligned}$$ + +This can only be true if $\Delta m = \pm 1$, +unless the inner products of $\hat{x}$ and $\hat{y}$ are zero, +in which case we cannot say anything about $\Delta m$ yet. +Assuming the latter, we take the inner product of +the commutator $\comm*{\hat{L}_z}{\hat{z}} = 0$, and find: + +$$\begin{aligned} + 0 + &= \matrixel{\ell_f m_f}{\hat{L}_z \hat{z}}{\ell_i m_i} - \matrixel{\ell_f m_f}{\hat{z} \hat{L}_z}{\ell_i m_i} + \\ + &= \hbar m_f \matrixel{\ell_f m_f}{\hat{z}}{\ell_i m_i} - \hbar m_i \matrixel{\ell_f m_f}{\hat{z}}{\ell_i m_i} + \\ + &= \hbar (m_f - m_i) \matrixel{\ell_f m_f}{\hat{z}}{\ell_i m_i} +\end{aligned}$$ + +If $\matrixel{f}{\hat{z}}{i} \neq 0$, we require $\Delta m = 0$. +The previous requirement was $\Delta m = \pm 1$, +implying that $\matrixel{f}{\hat{x}}{i} = \matrixel{f}{\hat{y}}{i} = 0$ +whenever $\matrixel{f}{\hat{z}}{i} \neq 0$. +Only if $\matrixel{f}{\hat{z}}{i} = 0$ +does the previous rule $\Delta m = \pm 1$ hold, +in which case the inner products of $\hat{x}$ and $\hat{y}$ are nonzero. +</div> +</div> + +Meanwhile, for the total angular momentum $\ell$ we have the following: + +$$\begin{aligned} + \boxed{ + \Delta \ell = \pm 1 + } +\end{aligned}$$ + +<div class="accordion"> +<input type="checkbox" id="proof-dipole-l"/> +<label for="proof-dipole-l">Proof</label> +<div class="hidden"> +<label for="proof-dipole-l">Proof.</label> +We start from the following relation +(which is already quite a chore to prove): + +$$\begin{aligned} + \comm{\hat{L}^2}{\comm*{\hat{L}^2}{\vu{r}}} + = 2 \hbar^2 (\vu{r} \hat{L}^2 + \hat{L}^2 \vu{r}) +\end{aligned}$$ + +<div class="accordion"> +<input type="checkbox" id="proof-dipole-l-comm"/> +<label for="proof-dipole-l-comm">Proof</label> +<div class="hidden"> +<label for="proof-dipole-l-comm">Proof.</label> +To begin with, we want to find the commutator of $\hat{L}^2$ and $\hat{x}$: + +$$\begin{aligned} + \comm*{\hat{L}^2}{\hat{x}} + &= \comm*{\hat{L}_x^2}{\hat{x}} + \comm*{\hat{L}_y^2}{\hat{x}} + \comm*{\hat{L}_z^2}{\hat{x}} + = \comm*{\hat{L}_y^2}{\hat{x}} + \comm*{\hat{L}_z^2}{\hat{x}} + \\ + &= \hat{L}_y \comm*{\hat{L}_y}{\hat{x}} + \comm*{\hat{L}_y}{\hat{x}} \hat{L}_y + + \hat{L}_z \comm*{\hat{L}_z}{\hat{x}} + \comm*{\hat{L}_z}{\hat{x}} \hat{L}_z +\end{aligned}$$ + +Evaluating these commutators gives us: + +$$\begin{aligned} + \comm*{\hat{L}_y}{\hat{x}} + &= \comm*{\hat{z} \hat{p}_x}{\hat{x}} - \comm*{\hat{x} \hat{p}_z}{\hat{x}} + = \hat{z} \comm*{\hat{p}_x}{\hat{x}} + \comm*{\hat{z}}{\hat{x}} \hat{p}_x + - \hat{x} \comm*{\hat{p}_z}{\hat{x}} - \comm*{\hat{x}}{\hat{x}} \hat{p}_z + = - i \hbar \hat{z} + \\ + \comm*{\hat{L}_z}{\hat{x}} + &= \comm*{\hat{x} \hat{p}_y}{\hat{x}} - \comm*{\hat{y} \hat{p}_x}{\hat{x}} + = \hat{x} \comm*{\hat{p}_y}{\hat{x}} + \comm*{\hat{x}}{\hat{x}} \hat{p}_y + - \hat{y} \comm*{\hat{p}_x}{\hat{x}} - \comm*{\hat{y}}{\hat{x}} \hat{p}_x + = i \hbar \hat{y} +\end{aligned}$$ + +Which we then insert back into the original equation, yielding: + +$$\begin{aligned} + \comm*{\hat{L}^2}{\hat{x}} + &= i \hbar (- \hat{L}_y \hat{z} - \hat{z} \hat{L}_y + \hat{L}_z \hat{y} + \hat{y} \hat{L}_z) +\end{aligned}$$ + +This can be simplified by introducing some more commutators: + +$$\begin{aligned} + \comm*{\hat{L}^2}{\hat{x}} + &= i \hbar \big( \!-\! ( \comm*{\hat{L}_y}{\hat{z}} + \hat{z} \hat{L}_y ) - \hat{z} \hat{L}_y + + ( \comm*{\hat{L}_z}{\hat{y}} + \hat{y} \hat{L}_z ) + \hat{y} \hat{L}_z \big) +\end{aligned}$$ + +Evaluating these commutators gives us: + +$$\begin{aligned} + \comm*{\hat{L}_y}{\hat{z}} + &= \comm*{\hat{z} \hat{p}_x}{\hat{z}} - \comm*{\hat{x} \hat{p}_z}{\hat{z}} + = \hat{z} \comm*{\hat{p}_x}{\hat{z}} + \comm*{\hat{z}}{\hat{z}} \hat{p}_x + - \hat{x} \comm*{\hat{p}_z}{\hat{z}} - \comm*{\hat{x}}{\hat{z}} \hat{p}_z + = i \hbar \hat{x} + \\ + \comm*{\hat{L}_z}{\hat{y}} + &= \comm*{\hat{x} \hat{p}_y}{\hat{y}} - \comm*{\hat{y} \hat{p}_x}{\hat{y}} + = \hat{x} \comm*{\hat{p}_y}{\hat{y}} + \comm*{\hat{x}}{\hat{y}} \hat{p}_y + - \hat{y} \comm*{\hat{p}_x}{\hat{y}} - \comm*{\hat{y}}{\hat{y}} \hat{p}_x + = - i \hbar \hat{x} +\end{aligned}$$ + +Substituting these then leads us to the first milestone of this proof: + +$$\begin{aligned} + \comm*{\hat{L}^2}{\hat{x}} + &= i \hbar \big( \!-\! i \hbar \hat{x} - \hat{z} \hat{L}_y - \hat{z} \hat{L}_y + - i \hbar \hat{x} + \hat{y} \hat{L}_z + \hat{y} \hat{L}_z \big) + \\ + &= 2 i \hbar (\hat{y} \hat{L}_z - \hat{z} \hat{L}_y - i \hbar \hat{x}) +\end{aligned}$$ + +Repeating this process for $\comm*{\hat{L}^2}{\hat{y}}$ and $\comm*{\hat{L}^2}{\hat{z}}$, +we find analogous expressions: + +$$\begin{aligned} + \comm*{\hat{L}^2}{\hat{y}} + &= 2 i \hbar (\hat{z} \hat{L}_x - \hat{x} \hat{L}_z - i \hbar \hat{y}) + \\ + \comm*{\hat{L}^2}{\hat{z}} + &= 2 i \hbar (\hat{x} \hat{L}_y - \hat{y} \hat{L}_x - i \hbar \hat{z}) +\end{aligned}$$ + +Next, we take the commutator with $\hat{L}^2$ of the commutator we just found: + +$$\begin{aligned} + \comm*{\hat{L}^2}{\comm*{\hat{L}^2}{\hat{x}}} + &= 2 i \hbar \big(\comm*{\hat{L}^2}{\hat{y} \hat{L}_z} - \comm*{\hat{L}^2}{\hat{z} \hat{L}_y} - i \hbar \comm*{\hat{L}^2}{\hat{x}}\big) + \\ + &= 2 i \hbar \big( \hat{y} \comm*{\hat{L}^2}{\hat{L}_z} + \comm*{\hat{L}^2}{\hat{y}} \hat{L}_z + - \hat{z} \comm*{\hat{L}^2}{\hat{L}_y} - \comm*{\hat{L}^2}{\hat{z}} \hat{L}_y + - i \hbar \comm*{\hat{L}^2}{\hat{x}} \big) +\end{aligned}$$ + +Where we used that $\comm*{\hat{L}^2}{\hat{L}_y} = \comm*{\hat{L}^2}{\hat{L}_z} = 0$. +The other commutators look familiar: + +$$\begin{aligned} + \comm*{\hat{L}^2}{\comm*{\hat{L}^2}{\hat{x}}} + &= 2 i \hbar \big( \comm*{\hat{L}^2}{\hat{y}} \hat{L}_z + - \comm*{\hat{L}^2}{\hat{z}} \hat{L}_y + - i \hbar \comm*{\hat{L}^2}{\hat{x}} \big) +\end{aligned}$$ + +By inserting the expressions we found earlier for these commutators, we get: + +$$\begin{aligned} + \comm*{\hat{L}^2}{\comm*{\hat{L}^2}{\hat{x}}} + %&= - 2 \hbar^2 \big( 2 (\hat{z} \hat{L}_x - \hat{x} \hat{L}_z - i \hbar \hat{y}) \hat{L}_z + %- 2 (\hat{x} \hat{L}_y - \hat{y} \hat{L}_x - i \hbar \hat{z}) \hat{L}_y + %- (\hat{L}^2 \hat{x} - \hat{x} \hat{L}^2) \big) + %\\ + &= - 4 \hbar^2 \big( \hat{z} \hat{L}_x \hat{L}_z - \hat{x} \hat{L}_z^2 - i \hbar \hat{y} \hat{L}_z + + \hat{y} \hat{L}_x \hat{L}_y - \hat{x} \hat{L}_y^2 + i \hbar \hat{z} \hat{L}_y \big) \\ + &\qquad\qquad + 2 \hbar^2 \big( \hat{L}^2 \hat{x} - \hat{x} \hat{L}^2 \big) +\end{aligned}$$ + +Substituting the well-known commutators +$i \hbar \hat{L}_y = \comm*{\hat{L}_z}{\hat{L}_x}$ and +$i \hbar \hat{L}_z = \comm*{\hat{L}_x}{\hat{L}_y}$: + +$$\begin{aligned} + \comm*{\hat{L}^2}{\comm*{\hat{L}^2}{\hat{x}}} + &= - 4 \hbar^2 \big( \hat{z} \hat{L}_x \hat{L}_z + \hat{y} \hat{L}_x \hat{L}_y + - \hat{x} \hat{L}_y^2 - \hat{x} \hat{L}_z^2 + + \hat{z} \comm*{\hat{L}_z}{\hat{L}_x} - \hat{y} \comm*{\hat{L}_x}{\hat{L}_y} \big) \\ + &\qquad\qquad + 2 \hbar^2 \big( \hat{L}^2 \hat{x} - \hat{x} \hat{L}^2 \big) + \\ + &= - 4 \hbar^2 \big( \hat{z} \hat{L}_z \hat{L}_x + \hat{y} \hat{L}_y \hat{L}_x + - \hat{x} \hat{L}_y^2 - \hat{x} \hat{L}_z^2 \big) + + 2 \hbar^2 \big( \hat{L}^2 \hat{x} - \hat{x} \hat{L}^2 \big) +\end{aligned}$$ + +By definition, $\hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2 = \hat{L}^2$, +which we use to arrive at: + +$$\begin{aligned} + \comm*{\hat{L}^2}{\comm*{\hat{L}^2}{\hat{x}}} + %&= - 4 \hbar^2 \big( \hat{z} \hat{L}_z \hat{L}_x + \hat{y} \hat{L}_y \hat{L}_x + \hat{x} \hat{L}_x^2 + %- \hat{x} \hat{L}_x^2 - \hat{x} \hat{L}_y^2 - \hat{x} \hat{L}_z^2 \big) + %+ 2 \hbar^2 \big( \hat{L}^2 \hat{x} - \hat{x} \hat{L}^2 \big) + %\\ + &= - 4 \hbar^2 \big( \hat{z} \hat{L}_z \hat{L}_x + \hat{y} \hat{L}_y \hat{L}_x + \hat{x} \hat{L}_x^2 - \hat{x} \hat{L}^2 \big) + + 2 \hbar^2 \big( \hat{L}^2 \hat{x} - \hat{x} \hat{L}^2 \big) + \\ + &= - 4 \hbar^2 \big( \hat{z} \hat{L}_z \hat{L}_x + \hat{y} \hat{L}_y \hat{L}_x + \hat{x} \hat{L}_x^2 \big) + + 2 \hbar^2 \big( \hat{L}^2 \hat{x} + \hat{x} \hat{L}^2 \big) +\end{aligned}$$ + +The second term is what we want to prove, +so the first term must vanish: + +$$\begin{aligned} + \hat{z} \hat{L}_z \hat{L}_x + \hat{y} \hat{L}_y \hat{L}_x + \hat{x} \hat{L}_x^2 + = (\vu{r} \cdot \vu{L}) \hat{L}_x + = (\vu{r} \cdot (\vu{r} \cross \vu{p})) \hat{L}_x + = (\vu{p} \cdot (\vu{r} \cross \vu{r})) \hat{L}_x + = 0 +\end{aligned}$$ + +Where $\vu{L} = \vu{r} \cross \vu{p}$ by definition, +and the cross product of a vector with itself is zero. + +This process can be repeated for +$\comm*{\hat{L}^2}{\comm*{\hat{L}^2}{\hat{y}}}$ and +$\comm*{\hat{L}^2}{\comm*{\hat{L}^2}{\hat{z}}}$, +leading us to: + +$$\begin{aligned} + \comm*{\hat{L}^2}{\comm*{\hat{L}^2}{\hat{x}}} + &= 2 \hbar^2 (\hat{x} \hat{L}^2 + \hat{L}^2 \hat{x}) + \\ + \comm*{\hat{L}^2}{\comm*{\hat{L}^2}{\hat{y}}} + &= 2 \hbar^2 (\hat{y} \hat{L}^2 + \hat{L}^2 \hat{y}) + \\ + \comm*{\hat{L}^2}{\comm*{\hat{L}^2}{\hat{z}}} + &= 2 \hbar^2 (\hat{z} \hat{L}^2 + \hat{L}^2 \hat{z}) +\end{aligned}$$ + +At last, this brings us to the desired equation for $\comm*{\hat{L}^2}{\comm*{\hat{L}^2}{\vu{r}}}$, +with $\vu{r} = (\hat{x}, \hat{y}, \hat{z})$. +</div> +</div> + +We then multiply this relation by $\bra{f} = \bra{\ell_f m_f}$ on the left +and $\ket{i} = \ket{\ell_i m_i}$ on the right, +so the right-hand side becomes: + +$$\begin{aligned} + 2 \hbar^2 \matrixel{f}{\vu{r} \hat{L}^2 \!\!+\! \hat{L}^2 \!\vu{r}}{i} + %\matrixel{\ell_f m_f}{\comm*{\hat{L}^2}{\comm*{\hat{L}^2}{\vu{r}}}}{\ell_i m_i} + &= 2 \hbar^2 \big( \matrixel{f}{\vu{r} \hat{L}^2}{i} + \matrixel{f}{\hat{L}^2 \vu{r}}{i} \big) + \\ + &= 2 \hbar^2 \big( \hbar^2 \ell_i (\ell_i \!+\! 1) \matrixel{f}{\vu{r}}{i} + + \hbar^2 \ell_f (\ell_f \!+\! 1) \matrixel{f}{\vu{r}}{i} \big) + \\ + &= 2 \hbar^4 \big(\ell_f (\ell_f \!+\! 1) + \ell_i (\ell_i \!+\! 1)\big) \matrixel{f}{\vu{r}}{i} +\end{aligned}$$ + +And, likewise, the left-hand side becomes: + +$$\begin{aligned} + \matrixel{f}{\comm*{\hat{L}^2}{\comm*{\hat{L}^2}{\vu{r}}}}{i} + &= \matrixel{f}{\hat{L}^2 \comm*{\hat{L}^2}{\vu{r}}}{i} + - \matrixel{f}{\comm*{\hat{L}^2}{\vu{r}} \hat{L}^2}{i} + \\ + &= \hbar^2 \ell_f (\ell_f \!+\! 1) \matrixel{f}{\comm*{\hat{L}^2}{\vu{r}}}{i} + - \hbar^2 \ell_i (\ell_i \!+\! 1) \matrixel{f}{\comm*{\hat{L}^2}{\vu{r}}}{i} + \\ + &= \hbar^2 \big( \ell_f (\ell_f \!+\! 1) - \ell_i (\ell_i \!+\! 1) \big) \matrixel{f}{\comm*{\hat{L}^2}{\vu{r}}}{i} + \\ + &= \hbar^2 \big( \ell_f (\ell_f \!+\! 1) - \ell_i (\ell_i \!+\! 1) \big) + \big( \matrixel{f}{\hat{L}^2 \vu{r}}{i} - \matrixel{f}{\vu{r} \hat{L}^2}{i} \big) + \\ + &= \hbar^4 \big( \ell_f (\ell_f \!+\! 1) - \ell_i (\ell_i \!+\! 1) \big)^2 \matrixel{f}{\vu{r}}{i} +\end{aligned}$$ + +Obviously, both sides are equal to each other, +leading to the following equation: + +$$\begin{aligned} + 2 \ell_f (\ell_f \!+\! 1) + 2 \ell_i (\ell_i \!+\! 1) + &= \big( \ell_f (\ell_f \!+\! 1) - \ell_i (\ell_i \!+\! 1) \big)^2 +\end{aligned}$$ + +To proceed, we rewrite the right-hand side like so: + +$$\begin{aligned} + \big( \ell_f (\ell_f \!+\! 1) - \ell_i (\ell_i \!+\! 1) \big)^2 + &= \big( \ell_f^2 - \ell_i^2 + \ell_f - \ell_i \big)^2 + \\ + &= \big( (\ell_f + \ell_i) (\ell_f - \ell_i) + (\ell_f - \ell_i) \big)^2 + \\ + &= (\ell_f + \ell_i)^2 (\ell_f - \ell_i)^2 + 2 (\ell_f + \ell_i) (\ell_f - \ell_i)^2 + (\ell_f - \ell_i)^2 + \\ + &= \big( (\ell_f + \ell_i)^2 + 2 (\ell_f + \ell_i) + 1 \big) (\ell_f - \ell_i)^2 + \\ + &= (\ell_f + \ell_i + 1)^2 (\ell_f - \ell_i)^2 +\end{aligned}$$ + +And then we do the same to the left-hand side, yielding: + +$$\begin{aligned} + 2 (\ell_f^2 + \ell_i^2 + \ell_f + \ell_i) + &= 2 \ell_f^2 + 2 \ell_i^2 + 2 \ell_f \ell_i - 2 \ell_f \ell_i + 2 \ell_f + 2 \ell_i + 1 - 1 + \\ + &= (\ell_f + \ell_i + 1)^2 + \ell_f^2 + \ell_i^2 - 2 \ell_f \ell_i - 1 + \\ + &= (\ell_f + \ell_i + 1)^2 + (\ell_f - \ell_i)^2 - 1 +\end{aligned}$$ + +The equation above has thus been simplified to the following form: + +$$\begin{aligned} + (\ell_f + \ell_i + 1)^2 + (\ell_f - \ell_i)^2 - 1 + &= (\ell_f + \ell_i + 1)^2 (\ell_f - \ell_i)^2 +\end{aligned}$$ + +Rearranging yields a product equal to zero, +so one or both of the factors must vanish: + +$$\begin{aligned} + 0 + &= (\ell_f + \ell_i + 1)^2 (\ell_f - \ell_i)^2 - (\ell_f + \ell_i + 1)^2 - (\ell_f - \ell_i)^2 + 1 + \\ + &= \big( (\ell_f + \ell_i + 1)^2 - 1 \big) \big( (\ell_f - \ell_i)^2 - 1 \big) +\end{aligned}$$ + +The first factor is zero if $\ell_f = \ell_i = 0$, +in which case the matrix element $\matrixel{f}{\vu{r}}{i} = 0$ anyway. +The other, non-trivial option is therefore: + +$$\begin{aligned} + (\ell_f - \ell_i)^2 + = 1 +\end{aligned}$$ +</div> +</div> + + +## Superselection rule + +Selection rules need not always be about atomic electron transitions. +According to the **principle of indistinguishability**, +permutating identical particles never leads to an observable difference. +In other words, the particles are fundamentally indistinguishable, +so for any observable $\hat{O}$ and multi-particle state $\ket{\Psi}$, we can say: + +$$\begin{aligned} + \matrixel{\Psi}{\hat{O}}{\Psi} + = \matrixel*{\hat{P} \Psi}{\hat{O}}{\hat{P} \Psi} +\end{aligned}$$ + +Where $\hat{P}$ is an arbitrary permutation operator. +Indistinguishability implies that $\comm*{\hat{P}}{\hat{O}} = 0$ +for all $\hat{O}$ and $\hat{P}$, +which lets us prove the above equation, using that $\hat{P}$ is unitary: + +$$\begin{aligned} + \matrixel*{\hat{P} \Psi}{\hat{O}}{\hat{P} \Psi} + = \matrixel{\Psi}{\hat{P}^{-1} \hat{O} \hat{P}}{\Psi} + = \matrixel{\Psi}{\hat{P}^{-1} \hat{P} \hat{O}}{\Psi} + = \matrixel{\Psi}{\hat{O}}{\Psi} +\end{aligned}$$ + +Consider a symmetric state $\ket{s}$ and an antisymmetric state $\ket{a}$ +(see [Pauli exclusion principle](/know/concept/pauli-exclusion-principle/)), +which obey the following for a permutation $\hat{P}$: + +$$\begin{aligned} + \hat{P} \ket{s} + = \ket{s} + \qquad + \hat{P} \ket{a} + = - \ket{a} +\end{aligned}$$ + +Any obervable $\hat{O}$ then satisfies the equation below, +again thanks to the fact that $\hat{P} = \hat{P}^{-1}$: + +$$\begin{aligned} + \matrixel{s}{\hat{O}}{a} + = \matrixel*{\hat{P} s}{\hat{O}}{a} + = \matrixel{s}{\hat{P}^{-1} \hat{O}}{a} + = \matrixel{s}{\hat{O} \hat{P}}{a} + = \matrixel*{s}{\hat{O}}{\hat{P} a} + = - \matrixel{s}{\hat{O}}{a} +\end{aligned}$$ + +This leads us to the **superselection rule**, +which states that there can never be any interference +between states of different permutation symmetry: + +$$\begin{aligned} + \boxed{ + \matrixel{s}{\hat{O}}{a} + = 0 + } +\end{aligned}$$ + + + +## References +1. D.J. Griffiths, D.F. Schroeter, + *Introduction to quantum mechanics*, 3rd edition, + Cambridge. |