summaryrefslogtreecommitdiff
path: root/content/know/concept/blochs-theorem/index.pdc
diff options
context:
space:
mode:
Diffstat (limited to 'content/know/concept/blochs-theorem/index.pdc')
-rw-r--r--content/know/concept/blochs-theorem/index.pdc115
1 files changed, 115 insertions, 0 deletions
diff --git a/content/know/concept/blochs-theorem/index.pdc b/content/know/concept/blochs-theorem/index.pdc
new file mode 100644
index 0000000..1828d8a
--- /dev/null
+++ b/content/know/concept/blochs-theorem/index.pdc
@@ -0,0 +1,115 @@
+---
+title: "Bloch's theorem"
+firstLetter: "B"
+publishDate: 2021-02-22
+categories:
+- Quantum mechanics
+
+date: 2021-02-22T20:02:14+01:00
+draft: false
+markup: pandoc
+---
+
+# Bloch's theorem
+In quantum mechanics, **Bloch's theorem** states that,
+given a potential $V(\vec{r})$ which is periodic on a lattice,
+i.e. $V(\vec{r}) = V(\vec{r} + \vec{a})$
+for a primitive lattice vector $\vec{a}$,
+then it follows that the solutions $\psi(\vec{r})$
+to the time-independent Schrödinger equation
+take the following form,
+where the function $u(\vec{r})$ is periodic on the same lattice,
+i.e. $u(\vec{r}) = u(\vec{r} + \vec{a})$:
+
+$$
+\begin{aligned}
+ \boxed{
+ \psi(\vec{r}) = u(\vec{r}) e^{i \vec{k} \cdot \vec{r}}
+ }
+\end{aligned}
+$$
+
+In other words, in a periodic potential,
+the solutions are simply plane waves with a periodic modulation,
+known as **Bloch functions** or **Bloch states**.
+
+This is suprisingly easy to prove:
+if the Hamiltonian $\hat{H}$ is lattice-periodic,
+then both $\psi(\vec{r})$ and $\psi(\vec{r} + \vec{a})$
+are eigenstates with the same energy:
+
+$$
+\begin{aligned}
+ \hat{H} \psi(\vec{r}) = E \psi(\vec{r})
+ \qquad
+ \hat{H} \psi(\vec{r} + \vec{a}) = E \psi(\vec{r} + \vec{a})
+\end{aligned}
+$$
+
+Now define the unitary translation operator $\hat{T}(\vec{a})$ such that
+$\psi(\vec{r} + \vec{a}) = \hat{T}(\vec{a}) \psi(\vec{r})$.
+From the previous equation, we then know that:
+
+$$
+\begin{aligned}
+ \hat{H} \hat{T}(\vec{a}) \psi(\vec{r})
+ = E \hat{T}(\vec{a}) \psi(\vec{r})
+ = \hat{T}(\vec{a}) \big(E \psi(\vec{r})\big)
+ = \hat{T}(\vec{a}) \hat{H} \psi(\vec{r})
+\end{aligned}
+$$
+
+In other words, if $\hat{H}$ is lattice-periodic,
+then it will commute with $\hat{T}(\vec{a})$,
+i.e. $[\hat{H}, \hat{T}(\vec{a})] = 0$.
+Consequently, $\hat{H}$ and $\hat{T}(\vec{a})$ must share eigenstates $\psi(\vec{r})$:
+
+$$
+\begin{aligned}
+ \hat{H} \:\psi(\vec{r}) = E \:\psi(\vec{r})
+ \qquad
+ \hat{T}(\vec{a}) \:\psi(\vec{r}) = \tau \:\psi(\vec{r})
+\end{aligned}
+$$
+
+Since $\hat{T}$ is unitary,
+its eigenvalues $\tau$ must have the form $e^{i \theta}$, with $\theta$ real.
+Therefore a translation by $\vec{a}$ causes a phase shift,
+for some vector $\vec{k}$:
+
+$$
+\begin{aligned}
+ \psi(\vec{r} + \vec{a})
+ = \hat{T}(\vec{a}) \:\psi(\vec{r})
+ = e^{i \theta} \:\psi(\vec{r})
+ = e^{i \vec{k} \cdot \vec{a}} \:\psi(\vec{r})
+\end{aligned}
+$$
+
+Let us now define the following function,
+keeping our arbitrary choice of $\vec{k}$:
+
+$$
+\begin{aligned}
+ u(\vec{r})
+ = e^{- i \vec{k} \cdot \vec{r}} \:\psi(\vec{r})
+\end{aligned}
+$$
+
+As it turns out, this function is guaranteed to be lattice-periodic for any $\vec{k}$:
+
+$$
+\begin{aligned}
+ u(\vec{r} + \vec{a})
+ &= e^{- i \vec{k} \cdot (\vec{r} + \vec{a})} \:\psi(\vec{r} + \vec{a})
+ \\
+ &= e^{- i \vec{k} \cdot \vec{r}} e^{- i \vec{k} \cdot \vec{a}} e^{i \vec{k} \cdot \vec{a}} \:\psi(\vec{r})
+ \\
+ &= e^{- i \vec{k} \cdot \vec{r}} \:\psi(\vec{r})
+ \\
+ &= u(\vec{r})
+\end{aligned}
+$$
+
+Then Bloch's theorem follows from
+isolating the definition of $u(\vec{r})$ for $\psi(\vec{r})$.