diff options
Diffstat (limited to 'content/know/concept/bose-einstein-distribution/index.pdc')
-rw-r--r-- | content/know/concept/bose-einstein-distribution/index.pdc | 83 |
1 files changed, 83 insertions, 0 deletions
diff --git a/content/know/concept/bose-einstein-distribution/index.pdc b/content/know/concept/bose-einstein-distribution/index.pdc new file mode 100644 index 0000000..2462c68 --- /dev/null +++ b/content/know/concept/bose-einstein-distribution/index.pdc @@ -0,0 +1,83 @@ +--- +title: "Bose-Einstein distribution" +firstLetter: "B" +publishDate: 2021-07-11 +categories: +- Physics +- Statistics +- Quantum mechanics + +date: 2021-07-11T18:22:44+02:00 +draft: false +markup: pandoc +--- + +# Bose-Einstein statistics + +**Bose-Einstein statistics** describe how bosons, +which do not obey the [Pauli exclusion principle](/know/concept/pauli-exclusion-principle/), +will distribute themselves across the available states +in a system at equilibrium. + +Consider a single-particle state $s$, +which can contain any number of bosons. +Since the occupation number $N_s$ is variable, +we turn to the [grand canonical ensemble](/know/concept/grand-canonical-ensemble/), +whose grand partition function $\mathcal{Z_s}$ is as follows, +where $\varepsilon_s$ is the energy per particle, +and $\mu$ is the chemical potential: + +$$\begin{aligned} + \mathcal{Z}_s + = \sum_{N_s = 0}^\infty \Big( \exp\!(- \beta (\varepsilon_s - \mu)) \Big)^{N_s} + = \frac{1}{1 - \exp\!(- \beta (\varepsilon_s - \mu))} +\end{aligned}$$ + +The corresponding [thermodynamic potential](/know/concept/thermodynamic-potential/) +is the Landau potential $\Omega$, given by: + +$$\begin{aligned} + \Omega_s + = - k T \ln{\mathcal{Z_s}} + = k T \ln\!\Big( 1 - \exp\!(- \beta (\varepsilon_s - \mu)) \Big) +\end{aligned}$$ + +The average number of particles $\expval{N_s}$ +is found by taking a derivative of $\Omega$: + +$$\begin{aligned} + \expval{N_s} + = - \pdv{\Omega_s}{\mu} + = k T \pdv{\ln{\mathcal{Z_s}}}{\mu} + = \frac{\exp\!(- \beta (\varepsilon_s - \mu))}{1 - \exp\!(- \beta (\varepsilon_s - \mu))} +\end{aligned}$$ + +By multitplying both the numerator and the denominator by $\exp\!(\beta(\epsilon_s \!-\! \mu))$, +we arrive at the standard form of the **Bose-Einstein distribution** $f_B$: + +$$\begin{aligned} + \boxed{ + \expval{N_s} + = f_B(\varepsilon_s) + = \frac{1}{\exp\!(\beta (\varepsilon_s - \mu)) - 1} + } +\end{aligned}$$ + +This tells the expected occupation number $\expval{N_s}$ of state $s$, +given a temperature $T$ and chemical potential $\mu$. +The corresponding variance $\sigma_s^2$ of $N_s$ is found to be: + +$$\begin{aligned} + \boxed{ + \sigma_s^2 + = k T \pdv{\expval{N_s}}{\mu} + = \expval{N_s} \big(1 + \expval{N_s}\big) + } +\end{aligned}$$ + + + +## References +1. H. Gould, J. Tobochnik, + *Statistical and thermal physics*, 2nd edition, + Princeton. |