summaryrefslogtreecommitdiff
path: root/content/know/concept/cauchy-strain-tensor/index.pdc
diff options
context:
space:
mode:
Diffstat (limited to 'content/know/concept/cauchy-strain-tensor/index.pdc')
-rw-r--r--content/know/concept/cauchy-strain-tensor/index.pdc18
1 files changed, 9 insertions, 9 deletions
diff --git a/content/know/concept/cauchy-strain-tensor/index.pdc b/content/know/concept/cauchy-strain-tensor/index.pdc
index f150723..cb48377 100644
--- a/content/know/concept/cauchy-strain-tensor/index.pdc
+++ b/content/know/concept/cauchy-strain-tensor/index.pdc
@@ -82,7 +82,7 @@ we expand the middle term to first order in $\va{a}$:
$$\begin{aligned}
\va{u}(\va{x} + \va{a})
\approx \va{u}(\va{x}) + a_x \pdv{\va{u}}{x} + a_y \pdv{\va{u}}{y} + a_z \pdv{\va{u}}{z}
- = \va{u}(\va{x}) + \va{a} \cdot \nabla \va{u}(\va{x})
+ = \va{u}(\va{x}) + (\va{a} \cdot \nabla) \va{u}(\va{x})
\end{aligned}$$
With this, we can now define the "shift" $\delta\va{a}$
@@ -91,7 +91,7 @@ as the difference between $\va{a}$ and $\va{A}$ like so:
$$\begin{aligned}
\delta{\va{a}}
\equiv \va{a} - \va{A}
- = \va{a} \cdot \nabla \va{u}(\va{x})
+ = (\va{a} \cdot \nabla) \va{u}(\va{x})
\end{aligned}$$
In index notation, we write this expression as follows,
@@ -245,8 +245,8 @@ is easy to express using the displacement field $\va{u}$:
$$\begin{aligned}
\boxed{
\delta(\dd{\va{l}})
- = \dd{\va{l}} \cdot \nabla \va{u}
- = (\nabla \vec{u})^\top \cdot \dd{\va{l}}
+ = (\dd{\va{l}} \cdot \nabla) \va{u}
+ %= (\nabla \vec{u})^\top \cdot \dd{\va{l}}
}
\end{aligned}$$
@@ -259,9 +259,9 @@ $$\begin{aligned}
= \delta(\va{a} \cross \va{b} \cdot \va{c})
&= \delta\va{a} \cross \va{b} \cdot \va{c} + \va{a} \cross \delta\va{b} \cdot \va{c} + \va{a} \cross \va{b} \cdot \delta\va{c}
\\
- &= (\va{a} \cdot \nabla\va{u}) \cross \va{b} \cdot \va{c}
- + \va{a} \cross (\va{b} \cdot \nabla\va{u}) \cdot \va{c}
- + \va{a} \cross \va{b} \cdot (\va{c} \cdot \nabla\va{u})
+ &= (\va{a} \cdot \nabla) \va{u} \cross \va{b} \cdot \va{c}
+ + \va{a} \cross (\va{b} \cdot \nabla )\va{u} \cdot \va{c}
+ + \va{a} \cross \va{b} \cdot (\va{c} \cdot \nabla) \va{u}
\end{aligned}$$
We can reorder the factors like so
@@ -303,7 +303,7 @@ $$\begin{aligned}
\delta(\dd{V})
= \delta(\va{c} \cdot \dd{\va{S}})
= \delta\va{c} \cdot \dd{\va{S}} + \va{c} \cdot \delta(\dd{\va{S}})
- = (\va{c} \cdot \nabla\va{u}) \cdot \dd{\va{S}} + \va{c} \cdot \delta(\dd{\va{S}})
+ = (\va{c} \cdot \nabla) \va{u} \cdot \dd{\va{S}} + \va{c} \cdot \delta(\dd{\va{S}})
\end{aligned}$$
By comparing this to the previous result for $\delta(\dd{V})$,
@@ -311,7 +311,7 @@ we arrive at the following equation:
$$\begin{aligned}
\nabla \cdot \va{u} (\va{c} \cdot \dd{\va{S}})
- = (\va{c} \cdot \nabla\va{u}) \cdot \dd{\va{S}} + \va{c} \cdot \delta(\dd{\va{S}})
+ = (\va{c} \cdot \nabla) \va{u} \cdot \dd{\va{S}} + \va{c} \cdot \delta(\dd{\va{S}})
\end{aligned}$$
Since $\va{c}$ is dot-multiplied at the front of each term,