diff options
Diffstat (limited to 'content/know/concept/dirac-delta-function/index.pdc')
-rw-r--r-- | content/know/concept/dirac-delta-function/index.pdc | 109 |
1 files changed, 109 insertions, 0 deletions
diff --git a/content/know/concept/dirac-delta-function/index.pdc b/content/know/concept/dirac-delta-function/index.pdc new file mode 100644 index 0000000..3982afc --- /dev/null +++ b/content/know/concept/dirac-delta-function/index.pdc @@ -0,0 +1,109 @@ +--- +title: "Dirac delta function" +firstLetter: "D" +publishDate: 2021-02-22 +categories: +- Mathematics +- Physics + +date: 2021-02-22T21:35:38+01:00 +draft: false +markup: pandoc +--- + +# Dirac delta function + +The **Dirac delta function** $\delta(x)$, often just called the **delta function**, +is an infinitely narrow discontinuous "spike" at $x = 0$ whose area is +defined to be 1: + +$$\begin{aligned} + \boxed{ + \delta(x) = + \begin{cases} + +\infty & \mathrm{if}\: x = 0 \\ + 0 & \mathrm{if}\: x \neq 0 + \end{cases} + \quad \mathrm{and} \quad + \int_{-\varepsilon}^\varepsilon \delta(x) \dd{x} = 1 + } +\end{aligned}$$ + +It is sometimes also called the **sampling function**, due to its most +important property: the so-called **sampling property**: + +$$\begin{aligned} + \boxed{ + \int f(x) \: \delta(x - x_0) \: dx = \int f(x) \: \delta(x_0 - x) \: dx = f(x_0) + } +\end{aligned}$$ + +$\delta(x)$ is thus an effective weapon against integrals. This may not seem very +useful due to its "unnatural" definition, but in fact it appears as the +limit of several reasonable functions: + +$$\begin{aligned} + \delta(x) + = \lim_{n \to +\infty} \!\Big\{ \frac{n}{\sqrt{\pi}} \exp(- n^2 x^2) \Big\} + = \lim_{n \to +\infty} \!\Big\{ \frac{n}{\pi} \frac{1}{1 + n^2 x^2} \Big\} + = \lim_{n \to +\infty} \!\Big\{ \frac{\sin(n x)}{\pi x} \Big\} +\end{aligned}$$ + +The last one is especially important, since it is equivalent to the +following integral, which appears very often in the context of +[Fourier transforms](/know/concept/fourier-transform/): + +$$\begin{aligned} + \boxed{ + \delta(x) + %= \lim_{n \to +\infty} \!\Big\{\frac{\sin(n x)}{\pi x}\Big\} + = \frac{1}{2\pi} \int_{-\infty}^\infty \exp(i k x) \dd{k} + \:\:\propto\:\: \hat{\mathcal{F}}\{1\} + } +\end{aligned}$$ + +When the argument of $\delta(x)$ is scaled, the delta function is itself scaled: + +$$\begin{aligned} + \boxed{ + \delta(s x) = \frac{1}{|s|} \delta(x) + } +\end{aligned}$$ + +*__Proof.__ Because it is symmetric, $\delta(s x) = \delta(|s| x)$. Then by +substituting $\sigma = |s| x$:* + +$$\begin{aligned} + \int \delta(|s| x) \dd{x} + &= \frac{1}{|s|} \int \delta(\sigma) \dd{\sigma} = \frac{1}{|s|} +\end{aligned}$$ + +*__Q.E.D.__* + +An even more impressive property is the behaviour of the derivative of +$\delta(x)$: + +$$\begin{aligned} + \boxed{ + \int f(\xi) \: \delta'(x - \xi) \dd{\xi} = f'(x) + } +\end{aligned}$$ + +*__Proof.__ Note which variable is used for the +differentiation, and that $\delta'(x - \xi) = - \delta'(\xi - x)$:* + +$$\begin{aligned} + \int f(\xi) \: \dv{\delta(x - \xi)}{x} \dd{\xi} + &= \dv{x} \int f(\xi) \: \delta(x - \xi) \dd{x} + = f'(x) +\end{aligned}$$ + +*__Q.E.D.__* + +This property also generalizes nicely for the higher-order derivatives: + +$$\begin{aligned} + \boxed{ + \int f(\xi) \: \dv[n]{\delta(x - \xi)}{x} \dd{\xi} = \dv[n]{f(x)}{x} + } +\end{aligned}$$ |