summaryrefslogtreecommitdiff
path: root/content/know/concept/dirac-delta-function/index.pdc
diff options
context:
space:
mode:
Diffstat (limited to 'content/know/concept/dirac-delta-function/index.pdc')
-rw-r--r--content/know/concept/dirac-delta-function/index.pdc41
1 files changed, 24 insertions, 17 deletions
diff --git a/content/know/concept/dirac-delta-function/index.pdc b/content/know/concept/dirac-delta-function/index.pdc
index 76b6e97..9eecefd 100644
--- a/content/know/concept/dirac-delta-function/index.pdc
+++ b/content/know/concept/dirac-delta-function/index.pdc
@@ -21,7 +21,7 @@ defined to be 1:
$$\begin{aligned}
\boxed{
- \delta(x) =
+ \delta(x) \equiv
\begin{cases}
+\infty & \mathrm{if}\: x = 0 \\
0 & \mathrm{if}\: x \neq 0
@@ -56,12 +56,10 @@ following integral, which appears very often in the context of
[Fourier transforms](/know/concept/fourier-transform/):
$$\begin{aligned}
- \boxed{
- \delta(x)
- %= \lim_{n \to +\infty} \!\Big\{\frac{\sin(n x)}{\pi x}\Big\}
- = \frac{1}{2\pi} \int_{-\infty}^\infty \exp(i k x) \dd{k}
- \:\:\propto\:\: \hat{\mathcal{F}}\{1\}
- }
+ \delta(x)
+ = \lim_{n \to +\infty} \!\Big\{\frac{\sin(n x)}{\pi x}\Big\}
+ = \frac{1}{2\pi} \int_{-\infty}^\infty \exp(i k x) \dd{k}
+ \:\:\propto\:\: \hat{\mathcal{F}}\{1\}
\end{aligned}$$
When the argument of $\delta(x)$ is scaled, the delta function is itself scaled:
@@ -72,18 +70,22 @@ $$\begin{aligned}
}
\end{aligned}$$
-*__Proof.__ Because it is symmetric, $\delta(s x) = \delta(|s| x)$. Then by
-substituting $\sigma = |s| x$:*
+<div class="accordion">
+<input type="checkbox" id="proof-scale"/>
+<label for="proof-scale">Proof</label>
+<div class="hidden">
+<label for="proof-scale">Proof.</label>
+Because it is symmetric, $\delta(s x) = \delta(|s| x)$.
+Then by substituting $\sigma = |s| x$:
$$\begin{aligned}
\int \delta(|s| x) \dd{x}
&= \frac{1}{|s|} \int \delta(\sigma) \dd{\sigma} = \frac{1}{|s|}
\end{aligned}$$
+</div>
+</div>
-*__Q.E.D.__*
-
-An even more impressive property is the behaviour of the derivative of
-$\delta(x)$:
+An even more impressive property is the behaviour of the derivative of $\delta(x)$:
$$\begin{aligned}
\boxed{
@@ -91,16 +93,21 @@ $$\begin{aligned}
}
\end{aligned}$$
-*__Proof.__ Note which variable is used for the
-differentiation, and that $\delta'(x - \xi) = - \delta'(\xi - x)$:*
+<div class="accordion">
+<input type="checkbox" id="proof-dv1"/>
+<label for="proof-dv1">Proof</label>
+<div class="hidden">
+<label for="proof-dv1">Proof.</label>
+Note which variable is used for the
+differentiation, and that $\delta'(x - \xi) = - \delta'(\xi - x)$:
$$\begin{aligned}
\int f(\xi) \: \dv{\delta(x - \xi)}{x} \dd{\xi}
&= \dv{x} \int f(\xi) \: \delta(x - \xi) \dd{x}
= f'(x)
\end{aligned}$$
-
-*__Q.E.D.__*
+</div>
+</div>
This property also generalizes nicely for the higher-order derivatives: