diff options
Diffstat (limited to 'content/know/concept/dirac-notation/index.pdc')
-rw-r--r-- | content/know/concept/dirac-notation/index.pdc | 129 |
1 files changed, 129 insertions, 0 deletions
diff --git a/content/know/concept/dirac-notation/index.pdc b/content/know/concept/dirac-notation/index.pdc new file mode 100644 index 0000000..f624574 --- /dev/null +++ b/content/know/concept/dirac-notation/index.pdc @@ -0,0 +1,129 @@ +--- +title: "Dirac notation" +firstLetter: "D" +publishDate: 2021-02-22 +categories: +- Quantum mechanics +- Physics + +date: 2021-02-22T21:35:46+01:00 +draft: false +markup: pandoc +--- + +# Dirac notation + +**Dirac notation** is a notation to do calculations in a Hilbert space +without needing to worry about the space's representation. It is +basically the *lingua franca* of quantum mechanics. + +In Dirac notation there are **kets** $\ket{V}$ from the Hilbert space +$\mathbb{H}$ and **bras** $\bra{V}$ from a dual $\mathbb{H}'$ of the +former. Crucially, the bras and kets are from different Hilbert spaces +and therefore cannot be added, but every bra has a corresponding ket and +vice versa. + +Bras and kets can be combined in two ways: the **inner product** +$\braket{V}{W}$, which returns a scalar, and the **outer product** +$\ket{V} \bra{W}$, which returns a mapping $\hat{L}$ from kets $\ket{V}$ +to other kets $\ket{V'}$, i.e. a linear operator. Recall that the +Hilbert inner product must satisfy: + +$$\begin{aligned} + \braket{V}{W} = \braket{W}{V}^* +\end{aligned}$$ + +So far, nothing has been said about the actual representation of bras or +kets. If we represent kets as $N$-dimensional columns vectors, the +corresponding bras are given by the kets' adjoints, i.e. their transpose +conjugates: + +$$\begin{aligned} + \ket{V} = + \begin{bmatrix} + v_1 \\ \vdots \\ v_N + \end{bmatrix} + \quad \implies \quad + \bra{V} = + \begin{bmatrix} + v_1^* & \cdots & v_N^* + \end{bmatrix} +\end{aligned}$$ + +The inner product $\braket{V}{W}$ is then just the familiar dot product $V \cdot W$: + +$$\begin{gathered} + \braket{V}{W} + = + \begin{bmatrix} + v_1^* & \cdots & v_N^* + \end{bmatrix} + \cdot + \begin{bmatrix} + w_1 \\ \vdots \\ w_N + \end{bmatrix} + = v_1^* w_1 + ... + v_N^* w_N +\end{gathered}$$ + +Meanwhile, the outer product $\ket{V} \bra{W}$ creates an $N \cross N$ matrix: + +$$\begin{gathered} + \ket{V} \bra{W} + = + \begin{bmatrix} + v_1 \\ \vdots \\ v_N + \end{bmatrix} + \cdot + \begin{bmatrix} + w_1^* & \cdots & w_N^* + \end{bmatrix} + = + \begin{bmatrix} + v_1 w_1^* & \cdots & v_1 w_N^* \\ + \vdots & \ddots & \vdots \\ + v_N w_1^* & \cdots & v_N w_N^* + \end{bmatrix} +\end{gathered}$$ + +If the kets are instead represented by functions $f(x)$ of +$x \in [a, b]$, then the bras represent *functionals* $F[u(x)]$ which +take an unknown function $u(x)$ as an argument and turn it into a scalar +using integration: + +$$\begin{aligned} + \ket{f} = f(x) + \quad \implies \quad + \bra{f} + = F[u(x)] + = \int_a^b f^*(x) \: u(x) \dd{x} +\end{aligned}$$ + +Consequently, the inner product is simply the following familiar integral: + +$$\begin{gathered} + \braket{f}{g} + = F[g(x)] + = \int_a^b f^*(x) \: g(x) \dd{x} +\end{gathered}$$ + +However, the outer product becomes something rather abstract: + +$$\begin{gathered} + \ket{f} \bra{g} + = f(x) \: G[u(x)] + = f(x) \int_a^b g^*(\xi) \: u(\xi) \dd{\xi} +\end{gathered}$$ + +This result makes more sense if we surround it by a bra and a ket: + +$$\begin{aligned} + \bra{u} \!\Big(\!\ket{f} \bra{g}\!\Big)\! \ket{w} + &= U\big[f(x) \: G[w(x)]\big] + = U\Big[ f(x) \int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big] + \\ + &= \int_a^b u^*(x) \: f(x) \: \Big(\int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big) \dd{x} + \\ + &= \Big( \int_a^b u^*(x) \: f(x) \dd{x} \Big) \Big( \int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big) + \\ + &= \braket{u}{f} \braket{g}{w} +\end{aligned}$$ |