summaryrefslogtreecommitdiff
path: root/content/know/concept/dirac-notation/index.pdc
diff options
context:
space:
mode:
Diffstat (limited to 'content/know/concept/dirac-notation/index.pdc')
-rw-r--r--content/know/concept/dirac-notation/index.pdc129
1 files changed, 129 insertions, 0 deletions
diff --git a/content/know/concept/dirac-notation/index.pdc b/content/know/concept/dirac-notation/index.pdc
new file mode 100644
index 0000000..f624574
--- /dev/null
+++ b/content/know/concept/dirac-notation/index.pdc
@@ -0,0 +1,129 @@
+---
+title: "Dirac notation"
+firstLetter: "D"
+publishDate: 2021-02-22
+categories:
+- Quantum mechanics
+- Physics
+
+date: 2021-02-22T21:35:46+01:00
+draft: false
+markup: pandoc
+---
+
+# Dirac notation
+
+**Dirac notation** is a notation to do calculations in a Hilbert space
+without needing to worry about the space's representation. It is
+basically the *lingua franca* of quantum mechanics.
+
+In Dirac notation there are **kets** $\ket{V}$ from the Hilbert space
+$\mathbb{H}$ and **bras** $\bra{V}$ from a dual $\mathbb{H}'$ of the
+former. Crucially, the bras and kets are from different Hilbert spaces
+and therefore cannot be added, but every bra has a corresponding ket and
+vice versa.
+
+Bras and kets can be combined in two ways: the **inner product**
+$\braket{V}{W}$, which returns a scalar, and the **outer product**
+$\ket{V} \bra{W}$, which returns a mapping $\hat{L}$ from kets $\ket{V}$
+to other kets $\ket{V'}$, i.e. a linear operator. Recall that the
+Hilbert inner product must satisfy:
+
+$$\begin{aligned}
+ \braket{V}{W} = \braket{W}{V}^*
+\end{aligned}$$
+
+So far, nothing has been said about the actual representation of bras or
+kets. If we represent kets as $N$-dimensional columns vectors, the
+corresponding bras are given by the kets' adjoints, i.e. their transpose
+conjugates:
+
+$$\begin{aligned}
+ \ket{V} =
+ \begin{bmatrix}
+ v_1 \\ \vdots \\ v_N
+ \end{bmatrix}
+ \quad \implies \quad
+ \bra{V} =
+ \begin{bmatrix}
+ v_1^* & \cdots & v_N^*
+ \end{bmatrix}
+\end{aligned}$$
+
+The inner product $\braket{V}{W}$ is then just the familiar dot product $V \cdot W$:
+
+$$\begin{gathered}
+ \braket{V}{W}
+ =
+ \begin{bmatrix}
+ v_1^* & \cdots & v_N^*
+ \end{bmatrix}
+ \cdot
+ \begin{bmatrix}
+ w_1 \\ \vdots \\ w_N
+ \end{bmatrix}
+ = v_1^* w_1 + ... + v_N^* w_N
+\end{gathered}$$
+
+Meanwhile, the outer product $\ket{V} \bra{W}$ creates an $N \cross N$ matrix:
+
+$$\begin{gathered}
+ \ket{V} \bra{W}
+ =
+ \begin{bmatrix}
+ v_1 \\ \vdots \\ v_N
+ \end{bmatrix}
+ \cdot
+ \begin{bmatrix}
+ w_1^* & \cdots & w_N^*
+ \end{bmatrix}
+ =
+ \begin{bmatrix}
+ v_1 w_1^* & \cdots & v_1 w_N^* \\
+ \vdots & \ddots & \vdots \\
+ v_N w_1^* & \cdots & v_N w_N^*
+ \end{bmatrix}
+\end{gathered}$$
+
+If the kets are instead represented by functions $f(x)$ of
+$x \in [a, b]$, then the bras represent *functionals* $F[u(x)]$ which
+take an unknown function $u(x)$ as an argument and turn it into a scalar
+using integration:
+
+$$\begin{aligned}
+ \ket{f} = f(x)
+ \quad \implies \quad
+ \bra{f}
+ = F[u(x)]
+ = \int_a^b f^*(x) \: u(x) \dd{x}
+\end{aligned}$$
+
+Consequently, the inner product is simply the following familiar integral:
+
+$$\begin{gathered}
+ \braket{f}{g}
+ = F[g(x)]
+ = \int_a^b f^*(x) \: g(x) \dd{x}
+\end{gathered}$$
+
+However, the outer product becomes something rather abstract:
+
+$$\begin{gathered}
+ \ket{f} \bra{g}
+ = f(x) \: G[u(x)]
+ = f(x) \int_a^b g^*(\xi) \: u(\xi) \dd{\xi}
+\end{gathered}$$
+
+This result makes more sense if we surround it by a bra and a ket:
+
+$$\begin{aligned}
+ \bra{u} \!\Big(\!\ket{f} \bra{g}\!\Big)\! \ket{w}
+ &= U\big[f(x) \: G[w(x)]\big]
+ = U\Big[ f(x) \int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big]
+ \\
+ &= \int_a^b u^*(x) \: f(x) \: \Big(\int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big) \dd{x}
+ \\
+ &= \Big( \int_a^b u^*(x) \: f(x) \dd{x} \Big) \Big( \int_a^b g^*(\xi) \: w(\xi) \dd{\xi} \Big)
+ \\
+ &= \braket{u}{f} \braket{g}{w}
+\end{aligned}$$