summaryrefslogtreecommitdiff
path: root/content/know/concept/einstein-coefficients
diff options
context:
space:
mode:
Diffstat (limited to 'content/know/concept/einstein-coefficients')
-rw-r--r--content/know/concept/einstein-coefficients/index.pdc16
1 files changed, 9 insertions, 7 deletions
diff --git a/content/know/concept/einstein-coefficients/index.pdc b/content/know/concept/einstein-coefficients/index.pdc
index 80707c6..9feaf8c 100644
--- a/content/know/concept/einstein-coefficients/index.pdc
+++ b/content/know/concept/einstein-coefficients/index.pdc
@@ -170,19 +170,21 @@ $$\begin{aligned}
= \frac{\big|\!\matrixel{a}{H_1}{b}\!\big|^2}{\hbar^2} \frac{\sin^2\!\big( (\omega_{ba} - \omega) t / 2 \big)}{(\omega_{ba} - \omega)^2}
\end{aligned}$$
-If the location of the nucleus of the atom has $z = 0$,
+If the nucleus is at $z = 0$,
then generally $\ket{1}$ and $\ket{2}$ will be even or odd functions of $z$,
-such that $\matrixel{1}{z}{1} = \matrixel{2}{z}{2} = 0$, leading to:
+meaning that $\matrixel{1}{z}{1} = \matrixel{2}{z}{2} = 0$
+(see also [Laporte's selection rule](/know/concept/selection-rules/)),
+leading to:
$$\begin{gathered}
- \matrixel{1}{H_1}{2} = - E_0 d
+ \matrixel{1}{H_1}{2} = - E_0 d^*
\qquad
- \matrixel{2}{H_1}{1} = - E_0 d^*
+ \matrixel{2}{H_1}{1} = - E_0 d
\\
\matrixel{1}{H_1}{1} = \matrixel{2}{H_1}{2} = 0
\end{gathered}$$
-Where $d \equiv q \matrixel{1}{z}{2}$ is a constant,
+Where $d \equiv q \matrixel{2}{z}{1}$ is a constant,
namely the $z$-component of the **transition dipole moment**.
The chance of an upward jump (i.e. absorption) is:
@@ -284,12 +286,12 @@ Let us return to the matrix elements of the perturbation $\hat{H}_1$,
and define the polarization unit vector $\vec{n}$:
$$\begin{aligned}
- \matrixel{1}{\hat{H}_1}{2}
+ \matrixel{2}{\hat{H}_1}{1}
= - \vec{d} \cdot \vec{E}_0
= - E_0 (\vec{d} \cdot \vec{n})
\end{aligned}$$
-Where $\vec{d} \equiv q \matrixel{1}{\vec{r}}{2}$ is
+Where $\vec{d} \equiv q \matrixel{2}{\vec{r}}{1}$ is
the full **transition dipole moment** vector, which is usually complex.
The goal is to calculate the average of $|\vec{d} \cdot \vec{n}|^2$.