diff options
Diffstat (limited to 'content/know/concept/electric-dipole-approximation')
-rw-r--r-- | content/know/concept/electric-dipole-approximation/index.pdc | 147 |
1 files changed, 147 insertions, 0 deletions
diff --git a/content/know/concept/electric-dipole-approximation/index.pdc b/content/know/concept/electric-dipole-approximation/index.pdc new file mode 100644 index 0000000..96b4fed --- /dev/null +++ b/content/know/concept/electric-dipole-approximation/index.pdc @@ -0,0 +1,147 @@ +--- +title: "Electric dipole approximation" +firstLetter: "E" +publishDate: 2021-09-14 +categories: +- Physics +- Quantum mechanics +- Optics + +date: 2021-09-14T13:11:54+02:00 +draft: false +markup: pandoc +--- + +# Electric dipole approximation + +Suppose that an [electromagnetic wave](/know/concept/electromagnetic-wave-equation/) +is travelling through an atom, and affecting the electrons. +The general Hamiltonian of an electron in such a wave is given by: + +$$\begin{aligned} + \hat{H} + &= \frac{\vec{P}{}^2}{2 m} - \frac{q}{2 m} (\vec{A} \cdot \vec{P} + \vec{P} \cdot \vec{A}) + \frac{q^2 \vec{A}{}^2}{2m} + V +\end{aligned}$$ + +With charge $q = - e$ +and electromagnetic vector potential $\vec{A}(\vec{r}, t)$. +We reduce this by fixing the Coulomb gauge $\nabla \cdot \vec{A} = 0$, +so that $\vec{A} \cdot \vec{P} = \vec{P} \cdot \vec{A}$, +and assume that $\vec{A}{}^2$ is negligible: + +$$\begin{aligned} + \hat{H} + = \hat{H}_0 + \hat{H}_1 + \qquad \quad + \hat{H}_0 + \equiv \frac{\vec{P}{}^2}{2 m} + V + \qquad \quad + \hat{H}_1 + \equiv - \frac{q}{m} \vec{P} \cdot \vec{A} +\end{aligned}$$ + +We have split $\hat{H}$ into $\hat{H}_0$ +and a perturbation $\hat{H}_1$, since $\vec{A}$ is small. +In an electromagnetic wave, +$\vec{A}$ is oscillating sinusoidally in time and space as follows: + +$$\begin{aligned} + \vec{A}(\vec{r}, t) = \vec{A}_0 \exp\!(i \vec{k} \cdot \vec{r} - i \omega t) +\end{aligned}$$ + +The corresponding perturbative +[electric field](/know/concept/electric-field/) $\vec{E}$ +points in the same direction: + +$$\begin{aligned} + \vec{E}(\vec{r}, t) + = - \pdv{\vec{A}}{t} + = \vec{E}_0 \exp\!(i \vec{k} \cdot \vec{r} - i \omega t) +\end{aligned}$$ + +Where $\vec{E}_0 = i \omega \vec{A}_0$. +Let us restrict ourselves to visible light, +whose wavelength $2 \pi / k \approx 10^{-6} \:\mathrm{m}$. +Meanwhile, an atomic orbital is on the order of $10^{-10} \:\mathrm{m}$, +so $\vec{k} \cdot \vec{r}$ is negligible: + +$$\begin{aligned} + \boxed{ + \vec{E}(\vec{r}, t) + \approx \vec{E}_0 \exp\!(- i \omega t) + } +\end{aligned}$$ + +This is the **electric dipole approximation**: +we ignore all spatial variation of $\vec{E}$, +and only consider its temporal oscillation. +Also, since we have not used the word "photon", +we are implicitly treating the radiation classically, +and the electron quantum-mechanically. + +Next, we want to convert $\hat{H}_1$ +to use the electric field $\vec{E}$ instead of the potential $\vec{A}$. +To do so, we rewrite the momemtum $\vec{P} = m \: \dv*{\vec{r}}{t}$ +and evaluate this in the [Heisenberg picture](/know/concept/heisenberg-picture/): + +$$\begin{aligned} + \matrixel{2}{\dv*{\vec{r}}{t}}{1} + &= \frac{i}{\hbar} \matrixel{2}{[\hat{H}_0, \vec{r}]}{1} + = \frac{i}{\hbar} \matrixel{2}{\hat{H}_0 \vec{r} - \vec{r} \hat{H}_0}{1} + \\ + &= \frac{i}{\hbar} (E_2 - E_1) \matrixel{2}{\vec{r}}{1} + = i \omega_0 \matrixel{2}{\vec{r}}{1} +\end{aligned}$$ + +Therefore, $\vec{P} / m = i \omega_0 \vec{r}$, +where $\omega_0 \equiv (E_2 - E_1) / \hbar$ is the resonance frequency of the transition, +close to which we assume that $\vec{A}$ and $\vec{E}$ are oscillating. +We thus get: + +$$\begin{aligned} + \hat{H}_1(t) + &= - \frac{q}{m} \vec{P} \cdot \vec{A} + = - i q \omega_0 \vec{r} \cdot \vec{A}_0 \exp\!(- i \omega t) + \\ + &= - q \vec{r} \cdot \vec{E}_0 \exp\!(- i \omega t) + = - \vec{d} \cdot \vec{E}_0 \exp\!(- i \omega t) +\end{aligned}$$ + +Where $\vec{d} \equiv q \vec{r} = - e \vec{r}$ is +the **transition dipole moment operator** of the electron, +hence the name **electric dipole approximation**. +Finally, since electric fields are actually real +(we let it be complex for mathematical convenience), +we take the real part, yielding: + +$$\begin{aligned} + \boxed{ + \hat{H}_1(t) + = - q \vec{r} \cdot \vec{E}_0 \cos\!(\omega t) + } +\end{aligned}$$ + +If this approximation is too rough, +$\vec{E}$ can always be Taylor-expanded in $(i \vec{k} \cdot \vec{r})$: + +$$\begin{aligned} + \vec{E}(\vec{r}, t) + = \vec{E}_0 \Big( 1 + (i \vec{k} \cdot \vec{r}) + \frac{1}{2} (i \vec{k} \cdot \vec{r})^2 + \: ... \Big) \exp\!(- i \omega t) +\end{aligned}$$ + +Taking the real part then yields the following series of higher-order correction terms: + +$$\begin{aligned} + \vec{E}(\vec{r}, t) + = \vec{E}_0 \Big( \cos\!(\omega t) + (\vec{k} \cdot \vec{r}) \sin\!(\omega t) - \frac{1}{2} (\vec{k} \cdot \vec{r})^2 \cos\!(\omega t) + \: ... \Big) +\end{aligned}$$ + + + +## References +1. M. Fox, + *Optical properties of solids*, 2nd edition, + Oxford. +2. D.J. Griffiths, D.F. Schroeter, + *Introduction to quantum mechanics*, 3rd edition, + Cambridge. |