diff options
Diffstat (limited to 'content/know/concept/electric-dipole-approximation')
-rw-r--r-- | content/know/concept/electric-dipole-approximation/index.pdc | 126 |
1 files changed, 74 insertions, 52 deletions
diff --git a/content/know/concept/electric-dipole-approximation/index.pdc b/content/know/concept/electric-dipole-approximation/index.pdc index 265babf..67c73ee 100644 --- a/content/know/concept/electric-dipole-approximation/index.pdc +++ b/content/know/concept/electric-dipole-approximation/index.pdc @@ -20,120 +20,142 @@ The general Hamiltonian of an electron in such a wave is given by: $$\begin{aligned} \hat{H} - &= \frac{\vec{P}{}^2}{2 m} - \frac{q}{2 m} (\vec{A} \cdot \vec{P} + \vec{P} \cdot \vec{A}) + \frac{q^2 \vec{A}{}^2}{2m} + V + &= \frac{(\vu{P} - q \vb{A})^2}{2 m} + q \varphi + \\ + &= \frac{\vu{P}{}^2}{2 m} - \frac{q}{2 m} (\vb{A} \cdot \vu{P} + \vu{P} \cdot \vb{A}) + \frac{q^2 \vb{A}^2}{2m} + q \varphi +\end{aligned}$$ + +With charge $q = - e$, +canonical momentum operator $\vu{P} = - i \hbar \nabla$, +and magnetic vector potential $\vb{A}(\vb{x}, t)$. +We reduce this by fixing the Coulomb gauge $\nabla \cdot \vb{A} = 0$, +so that $\vb{A} \cdot \vu{P} = \vu{P} \cdot \vb{A}$: + +$$\begin{aligned} + \comm*{\vb{A}}{\vu{P}} \psi + &= -i \hbar \vb{A} \cdot (\nabla \psi) + i \hbar \nabla \cdot (\vb{A} \psi) + \\ + &= i \hbar (\nabla \cdot \vb{A}) \psi + = 0 \end{aligned}$$ -With charge $q = - e$ -and electromagnetic vector potential $\vec{A}(\vec{r}, t)$. -We reduce this by fixing the Coulomb gauge $\nabla \cdot \vec{A} = 0$, -so that $\vec{A} \cdot \vec{P} = \vec{P} \cdot \vec{A}$, -and assume that $\vec{A}{}^2$ is negligible: +Where $\psi$ is an arbitrary test function. +Assuming $\vb{A}$ is so small that $\vb{A}{}^2$ is negligible, we split $\hat{H}$ as follows, +where $\hat{H}_1$ can be regarded as a perturbation to $\hat{H}_0$: $$\begin{aligned} \hat{H} = \hat{H}_0 + \hat{H}_1 \qquad \quad \hat{H}_0 - \equiv \frac{\vec{P}{}^2}{2 m} + V + \equiv \frac{\vu{P}{}^2}{2 m} + q \varphi \qquad \quad \hat{H}_1 - \equiv - \frac{q}{m} \vec{P} \cdot \vec{A} + \equiv - \frac{q}{m} \vu{P} \cdot \vb{A} \end{aligned}$$ -We have split $\hat{H}$ into $\hat{H}_0$ -and a perturbation $\hat{H}_1$, since $\vec{A}$ is small. -In an electromagnetic wave, -$\vec{A}$ is oscillating sinusoidally in time and space as follows: +In an electromagnetic wave, $\vb{A}$ is oscillating sinusoidally in time and space: $$\begin{aligned} - \vec{A}(\vec{r}, t) = - i \vec{A}_0 \exp\!(i \vec{k} \cdot \vec{r} - i \omega t) + \vb{A}(\vb{x}, t) = \vb{A}_0 \sin\!(\vb{k} \cdot \vb{x} - \omega t) \end{aligned}$$ -The corresponding perturbative -[electric field](/know/concept/electric-field/) $\vec{E}$ -points in the same direction: +Mathematically, it is more convenient to represent this with a complex exponential, +whose real part should be taken at the end of the calculation: $$\begin{aligned} - \vec{E}(\vec{r}, t) - = - \pdv{\vec{A}}{t} - = \vec{E}_0 \exp\!(i \vec{k} \cdot \vec{r} - i \omega t) + \vb{A}(\vb{x}, t) = - i \vb{A}_0 \exp\!(i \vb{k} \cdot \vb{x} - i \omega t) \end{aligned}$$ -Where $\vec{E}_0 = \omega \vec{A}_0$. +The corresponding perturbative [electric field](/know/concept/electric-field/) $\vb{E}$ is then given by: + +$$\begin{aligned} + \vb{E}(\vb{x}, t) + = - \pdv{\vb{A}}{t} + = \vb{E}_0 \exp\!(i \vb{k} \cdot \vb{x} - i \omega t) +\end{aligned}$$ + +Where $\vb{E}_0 = \omega \vb{A}_0$. Let us restrict ourselves to visible light, -whose wavelength $2 \pi / k \approx 10^{-6} \:\mathrm{m}$. -Meanwhile, an atomic orbital is on the order of $10^{-10} \:\mathrm{m}$, -so $\vec{k} \cdot \vec{r}$ is negligible: +whose wavelength $2 \pi / |\vb{k}| \sim 10^{-6} \:\mathrm{m}$. +Meanwhile, an atomic orbital is several Bohr $\sim 10^{-10} \:\mathrm{m}$, +so $\vb{k} \cdot \vb{x}$ is negligible: $$\begin{aligned} \boxed{ - \vec{E}(\vec{r}, t) - \approx \vec{E}_0 \exp\!(- i \omega t) + \vb{E}(\vb{x}, t) + \approx \vb{E}_0 \exp\!(- i \omega t) } \end{aligned}$$ This is the **electric dipole approximation**: -we ignore all spatial variation of $\vec{E}$, +we ignore all spatial variation of $\vb{E}$, and only consider its temporal oscillation. Also, since we have not used the word "photon", we are implicitly treating the radiation classically, and the electron quantum-mechanically. -Next, we want to convert $\hat{H}_1$ -to use the electric field $\vec{E}$ instead of the potential $\vec{A}$. -To do so, we rewrite the momemtum $\vec{P} = m \: \dv*{\vec{r}}{t}$ +Next, we want to rewrite $\hat{H}_1$ +to use the electric field $\vb{E}$ instead of the potential $\vb{A}$. +To do so, we use that $\vu{P} = m \: \dv*{\vu{x}}{t}$ and evaluate this in the [interaction picture](/know/concept/interaction-picture/): $$\begin{aligned} - \matrixel{2}{\dv*{\vec{r}}{t}}{1} - &= \frac{i}{\hbar} \matrixel{2}{[\hat{H}_0, \vec{r}]}{1} - = \frac{i}{\hbar} \matrixel{2}{\hat{H}_0 \vec{r} - \vec{r} \hat{H}_0}{1} - \\ - &= \frac{i}{\hbar} (E_2 - E_1) \matrixel{2}{\vec{r}}{1} - = i \omega_0 \matrixel{2}{\vec{r}}{1} + \vu{P} + = m \dv*{\vu{x}}{t} + = m \frac{i}{\hbar} \comm*{\hat{H}_0}{\vu{x}} + = m \frac{i}{\hbar} (\hat{H}_0 \vu{x} - \vu{x} \hat{H}_0) +\end{aligned}$$ + +Taking the off-diagonal inner product with +the two-level system's states $\ket{1}$ and $\ket{2}$ gives: + +$$\begin{aligned} + \matrixel{2}{\vu{P}}{1} + = m \frac{i}{\hbar} \matrixel{2}{\hat{H}_0 \vu{x} - \vu{x} \hat{H}_0}{1} + = m i \omega_0 \matrixel{2}{\vu{x}}{1} \end{aligned}$$ -Therefore, $\vec{P} / m = i \omega_0 \vec{r}$, -where $\omega_0 \equiv (E_2 - E_1) / \hbar$ is the resonance frequency of the transition, -close to which we assume that $\vec{A}$ and $\vec{E}$ are oscillating, i.e. $\omega \approx \omega_0$. +Therefore, $\vu{P} / m = i \omega_0 \vu{x}$, +where $\omega_0 \equiv (E_2 \!-\! E_1) / \hbar$ is the resonance of the energy gap, +close to which we assume that $\vb{A}$ and $\vb{E}$ are oscillating, i.e. $\omega \approx \omega_0$. We thus get: $$\begin{aligned} \hat{H}_1(t) - &= - \frac{q}{m} \vec{P} \cdot \vec{A} - = - (- i i) q \omega_0 \vec{r} \cdot \vec{A}_0 \exp\!(- i \omega t) + &= - \frac{q}{m} \vu{P} \cdot \vb{A} + = - (- i i) q \omega_0 \vu{x} \cdot \vb{A}_0 \exp\!(- i \omega t) \\ - &\approx - q \vec{r} \cdot \vec{E}_0 \exp\!(- i \omega t) - = - \vec{d} \cdot \vec{E}_0 \exp\!(- i \omega t) + &\approx - q \vu{x} \cdot \vb{E}_0 \exp\!(- i \omega t) + = - \vu{d} \cdot \vb{E}_0 \exp\!(- i \omega t) \end{aligned}$$ -Where $\vec{d} \equiv q \vec{r} = - e \vec{r}$ is +Where $\vu{d} \equiv q \vu{x} = - e \vu{x}$ is the **transition dipole moment operator** of the electron, hence the name **electric dipole approximation**. -Finally, since electric fields are actually real -(we let it be complex for mathematical convenience), -we take the real part, yielding: +Finally, we take the real part, yielding: $$\begin{aligned} \boxed{ \hat{H}_1(t) - = - q \vec{r} \cdot \vec{E}_0 \cos\!(\omega t) + = - \vu{d} \cdot \vb{E}(t) + = - q \vu{x} \cdot \vb{E}_0 \cos\!(\omega t) } \end{aligned}$$ If this approximation is too rough, -$\vec{E}$ can always be Taylor-expanded in $(i \vec{k} \cdot \vec{r})$: +$\vb{E}$ can always be Taylor-expanded in $(i \vb{k} \cdot \vb{x})$: $$\begin{aligned} - \vec{E}(\vec{r}, t) - = \vec{E}_0 \Big( 1 + (i \vec{k} \cdot \vec{r}) + \frac{1}{2} (i \vec{k} \cdot \vec{r})^2 + \: ... \Big) \exp\!(- i \omega t) + \vb{E}(\vb{x}, t) + = \vb{E}_0 \Big( 1 + (i \vb{k} \cdot \vb{x}) + \frac{1}{2} (i \vb{k} \cdot \vb{x})^2 + \: ... \Big) \exp\!(- i \omega t) \end{aligned}$$ Taking the real part then yields the following series of higher-order correction terms: $$\begin{aligned} - \vec{E}(\vec{r}, t) - = \vec{E}_0 \Big( \cos\!(\omega t) + (\vec{k} \cdot \vec{r}) \sin\!(\omega t) - \frac{1}{2} (\vec{k} \cdot \vec{r})^2 \cos\!(\omega t) + \: ... \Big) + \vb{E}(\vb{x}, t) + = \vb{E}_0 \Big( \cos\!(\omega t) + (\vb{k} \cdot \vb{x}) \sin\!(\omega t) - \frac{1}{2} (\vb{k} \cdot \vb{x})^2 \cos\!(\omega t) + \: ... \Big) \end{aligned}$$ |